scispace - formally typeset
Open AccessJournal ArticleDOI

Global burned area and biomass burning emissions from small fires

Reads0
Chats0
TLDR
In this paper, a method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) was developed to estimate the influence of these fires.
Abstract
In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Global Carbon Budget 2016

Corinne Le Quéré, +71 more
TL;DR: In this article, the authors quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Journal ArticleDOI

Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4)

TL;DR: The Global Fire Emissions Database (GFED4) as discussed by the authors provides global monthly burned area at 0.25°m spatial resolution from mid-1995 through the present and daily burned area for the time series extending back to August 2000.
Journal ArticleDOI

The global methane budget 2000–2017

Marielle Saunois, +95 more
TL;DR: The second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations) as discussed by the authors.
Journal ArticleDOI

The global methane budget 2000–2012

Marielle Saunois, +81 more
TL;DR: The Global Carbon Project (GCP) as discussed by the authors is a consortium of multi-disciplinary scientists, including atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions.
References
More filters
Journal ArticleDOI

Overview of the radiometric and biophysical performance of the MODIS vegetation indices

TL;DR: In this paper, the authors evaluated the performance and validity of the MODIS vegetation indices (VI), the normalized difference vegetation index (NDVI) and enhanced vegetation index(EVI), produced at 1-km and 500-m resolutions and 16-day compositing periods.
Book

Principles of Terrestrial Ecosystem Ecology

TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Journal ArticleDOI

MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets

TL;DR: The datasets and algorithms used to create the Collection 5 MODIS Global Land Cover Type product, which is substantially changed relative to Collection 4, are described, with a four-fold increase in spatial resolution and changes in the input data and classification algorithm.
Journal ArticleDOI

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Journal ArticleDOI

Global land cover mapping from MODIS: algorithms and early results

TL;DR: This product provides maps of global land cover at 1-km spatial resolution using several classification systems, principally that of the IGBP, and a supervised classification methodology is used that exploits a global database of training sites interpreted from high-resolution imagery in association with ancillary data.
Related Papers (5)