scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Global Epidemiology of Campylobacter Infection

01 Jul 2015-Clinical Microbiology Reviews (American Society for Microbiology)-Vol. 28, Iss: 3, pp 687-720
TL;DR: Overall, campylobacteriosis is still one of the most important infectious diseases that is likely to challenge global health in the years to come.
Abstract: Campylobacter jejuni infection is one of the most widespread infectious diseases of the last century. The incidence and prevalence of campylobacteriosis have increased in both developed and developing countries over the last 10 years. The dramatic increase in North America, Europe, and Australia is alarming, and data from parts of Africa, Asia, and the Middle East indicate that campylobacteriosis is endemic in these areas, especially in children. In addition to C. jejuni, there is increasing recognition of the clinical importance of emerging Campylobacter species, including Campylobacter concisus and Campylobacter ureolyticus. Poultry is a major reservoir and source of transmission of campylobacteriosis to humans. Other risk factors include consumption of animal products and water, contact with animals, and international travel. Strategic implementation of multifaceted biocontrol measures to reduce the transmission of this group of pathogens is paramount for public health. Overall, campylobacteriosis is still one of the most important infectious diseases that is likely to challenge global health in the years to come. This review provides a comprehensive overview of the global epidemiology, transmission, and clinical relevance of Campylobacter infection.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC is provided, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Abstract: Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the prevalence and the genotypic distribution of Campylobacter spp. and their association with diarrhoea and child growth in children of less than the age of two in the Limpopo Province of South Africa were determined.
Abstract: Campylobacter spp. are one of the most frequent causes of diarrhoeal disease in humans throughout the world. This study aimed at determining the prevalence and the genotypic distribution of Campylobacter spp. and their association with diarrhoea and child growth in children of less than the age of two in the Limpopo Province of South Africa.A total of 4280 diarrheal and non-diarrheal stool samples were collected on a monthly basis from children recruited at birth and followed up to 24 months. All stool samples were screened for the presence Campylobacter antigen using ELISA technique after which CAH 16S primer was used on the positive samples to confirm the presence of Campylobacter. Subsequently, the PCR positive samples were further characterised using species specific primers for Campylobacter jejuni and Campylobacter coli.Campylobacter antigen was detected in 564/4280 (13.2%). Campylobacter was more commonly found in diarrheal stools (20.4%) compared to non-diarrheal stools (12.4%) with a statistically significant difference (χ2 = 7.345; p = 0.006). Throughout the year there were two main peaks of Campylobacter infection one in December- January and the second peak in June. The prevalence of Campylobacter increased with the age of the children up to 11 months after which the prevalence decreased. Out of 564 positive ELISA samples, 257 (45.6%) were confirmed to have 16S rRNA gene for Campylobacter spp. Furthermore, C. jejuni was found to be more prevalent (232/257) than C. coli (25/257) with a prevalence of 90.3% and 9.7%, respectively. Both C. jejuni and C. coli were significantly associated with diarrhea with statistical values of (χ2 = 22.224; p < 0.001) and (χ2 = 81.682; p < 0.001) respectively. Sequences generated from the analysis of hip gene confirmed the PCR positives samples were C. jejuni positive.This study has delineated a high prevalence of Campylobacter spp. in the study cohort. Moreover, C. jejuni was found to be more prevalent than C. coli both of which were associated with diarrhea. These findings are of clinical and epidemiological significance.

2 citations

Journal ArticleDOI
30 Mar 2023
TL;DR: In this article , the emergence and transmission of antibiotic-resistant Campylobacter in the ecosystem are complex and multidirectional, and are affected by multiple factors, such as interspecies transmission and subsequent clonal expansion.
Abstract: Abstract As a pathogen of a major public health concern with animal health importance, Campylobacter constitutes a clear and present threat to One Health. This organism colonizes the intestinal tract and is widely distributed among various animal species, including livestock and poultry, companion animals, and wildlife. As a result of its broad distribution, Campylobacter is exposed to antibiotics used in both human and veterinary medicine, which creates antibiotic selection pressure that has driven the development and rising prevalence of antibiotic resistant Campylobacter . This is particularly evident with the resistance to fluoroquinolone (FQ), which has become a great concern for public health. However, the increased prevalence of antibiotic-resistant Campylobacter cannot be solely attributed to antibiotic usage, as interspecies transmission and subsequent clonal expansion also contribute to the dissemination of antibiotic-resistant Campylobacter . This is exemplified by the emergence and expansion of FQ-resistant Campylobacter clones in animal production systems where FQ antibiotics were never used, the transmission of extensively drug resistant Campylobacter from dogs to human patients, and the spread of antibiotic-resistant and hypervirulent Campylobacter from ruminants to humans. Another notable finding from recently published work is the emergence of antibiotic resistance genes of Gram-positive origin in Campylobacter , suggesting that genetic exchange between Campylobacter and Gram-positive bacteria occurs in the natural environment and is more frequent than previously realized. Once these “foreign” antibiotic resistance genes are presented in Campylobacter , they can further disseminate by clonal expansion or horizontal gene transfer among different Campylobacter species/strains. These findings indicate that the emergence and transmission of antibiotic-resistant Campylobacter in the ecosystem are complex and multidirectional, and are affected by multiple factors. Thus, a holistic and One Health approach is necessary to fully comprehend and mitigate antibiotic resistant Campylobacter .

2 citations

Journal ArticleDOI
TL;DR: In this paper , the emergence of antimicrobial resistance in Campylobacter is a concerning food safety challenge, and monitoring the trends of AMR is vital for a better risk assessment.
Abstract: Campylobacter is a major cause of gastroenteritis worldwide, with broiler meat accounting for most illnesses. Antimicrobial intervention is recommended in severe cases of campylobacteriosis. The emergence of antimicrobial resistance (AMR) in Campylobacter is a concerning food safety challenge, and monitoring the trends of AMR is vital for a better risk assessment. This study aimed to characterize the phenotypic profiles and molecular markers of AMR and virulence in the prevalent Campylobacter species contaminating chilled chicken carcasses sampled from supermarkets in the United Arab Emirates (UAE). Campylobacter was detected in 90 (28.6%) out of 315 tested samples, and up to five isolates from each were confirmed using multiplex PCR. The species C. coli was detected in 83% (75/90) of the positive samples. Whole-genome sequencing was used to characterize the determinants of AMR and potential virulence genes in 45 non-redundant C. coli isolates. We identified nine resistance genes, including four associated with resistance to aminoglycoside (aph(3')-III, ant(6)-Ia, aph(2″)-Ib, and aac(6')-Im), and three associated with Beta-lactam resistance (blaOXA-61, blaOXA-193, and blaOXA-489), and two linked to tetracycline resistance (tet(O/32/O), and tet(O)), as well as point mutations in gyrA (fluoroquinolones resistance), 23S rRNA (macrolides resistance), and rpsL (streptomycin resistance) genes. A mutation in gyrA 2 p.T86I, conferring resistance to fluoroquinolones, was detected in 93% (42/45) of the isolates and showed a perfect match with the phenotype results. The simultaneous presence of blaOXA-61 and blaOXA-193 genes was identified in 86.6% (39/45) of the isolates. In silico analysis identified 7 to 11 virulence factors per each C. coli isolate. Some of these factors were prevalent in all examined strains and were associated with adherence (cadF, and jlpA), colonization and immune evasion (capsule biosynthesis and transport, lipooligosaccharide), and invasion (ciaB). This study provides the first published evidence from the UAE characterizing Campylobacter virulence, antimicrobial resistance genotype, and phenotype analysis from retail chicken. The prevalent C. coli in the UAE retail chicken carries multiple virulence genes and antimicrobial resistance markers and exhibits frequent phenotype resistance to macrolides, quinolones, and tetracyclines. The present investigation adds to the current knowledge on molecular epidemiology and AMR development in non-jejuni Campylobacter species in the Middle East and globally.

2 citations

Journal ArticleDOI
TL;DR: In the two species biofilms, B. subtilis produces two antibiotics, bacillaene and bacilysin, that inhibit C. jejuni growth, which supports the application of the PS-216 strain to pathogen biofilm control.
Abstract: Campylobacter jejuni is a prevalent cause of foodborne infections worldwide, while Bacillus subtilis as a potential probiotic represents an alternative strategy to control this alimentary infection. However, only limited literature exists on the specific mechanisms that shape interactions between B. subtilis and C. jejuni in biofilms. ABSTRACT The foodborne pathogen Campylobacter jejuni is typically found in an agricultural environment; in animals, such as birds, as an intestinal commensal; and also in food products, especially fresh poultry meat. Campylobacter interactions within mixed species biofilms are poorly understood, especially at the microscale. We have recently shown that the beneficial bacterium Bacillus subtilis reduces C. jejuni survival and biofilm formation in coculture by secreting the antibiotic bacillaene. We extend these studies here by providing evidence that besides bacillaene, the antagonistic effect of B. subtilis involves a nonribosomal peptide bacilysin and that the fully functional antagonism depends on the quorum-sensing transcriptional regulator ComA. Using confocal laser scanning microscopy, we also show that secreted antibiotics influence the distribution of C. jejuni and B. subtilis cells in the submerged biofilm and decrease the thickness of the pathogen’s biofilm. Furthermore, we demonstrate that genes encoding structural or regulatory proteins of the efflux apparatus system (cmeF and cmeR), respectively, contribute to the survival of C. jejuni during interaction with B. subtilis PS-216. In conclusion, this study demonstrates a strong potential of B. subtilis PS-216 to reduce C. jejuni biofilm growth, which supports the application of the PS-216 strain to pathogen biofilm control. IMPORTANCE Campylobacter jejuni is a prevalent cause of foodborne infections worldwide, while Bacillus subtilis as a potential probiotic represents an alternative strategy to control this alimentary infection. However, only limited literature exists on the specific mechanisms that shape interactions between B. subtilis and C. jejuni in biofilms. This study shows that in the two species biofilms, B. subtilis produces two antibiotics, bacillaene and bacilysin, that inhibit C. jejuni growth. In addition, we provide the first evidence that specific pathogen efflux pumps contribute to the defense against B. subtilis attack. Specifically, the CmeDEF pump acts during the defense against bacilysin, while CmeR-dependent overexpression of CmeABC nullifies the bacillaene attack. The role of specific B. subtilis antibiotics and these polyspecific pumps, known for providing resistance against medically relevant antibiotics, has not been studied during bacterial competition in biofilms before. Hence, this work broadens our understanding of mechanisms that shape antagonisms and defense during probiotic-pathogen interactions.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: Interventions targeting five pathogens can substantially reduce the burden of moderate-to-severe diarrhoea and suggest new methods and accelerated implementation of existing interventions (rotavirus vaccine and zinc) are needed to prevent disease and improve outcomes.

2,766 citations


"Global Epidemiology of Campylobacte..." refers background in this paper

  • ...with moderate to severe diarrhea in children from Kolkata, India, Mirzapur, Bangladesh, and Karachi, Pakistan (66)....

    [...]

  • ...In addition, in a prospective case-control study conducted between 1 December 2007 and 3 March 2011 to identify the etiology of diarrhea in children aged 0 to 59 months, C. jejuni was reported to be significantly associated July 2015 Volume 28 Number 3 cmr.asm.org 693Clinical Microbiology Reviews on M arch 21, 2021 by guest http://cm r.asm .org/ D ow nloaded from with moderate to severe diarrhea in children from Kolkata, India, Mirzapur, Bangladesh, and Karachi, Pakistan (66)....

    [...]

Journal ArticleDOI
TL;DR: Two important processes have occurred to legitimize these conditions, and to increase attention toward the research and clinical care of patients with functional gastrointestinal disorders (FGID), a shift in conceptualizing these disorders from a disease-based, reductionistic model, to a more integrated, biopsychosocial model of illness.

2,274 citations

Journal ArticleDOI
TL;DR: Overabundance of Fusobacterium sequences in tumor versus matched normal control tissue is verified by quantitative PCR analysis from a total of 99 subjects, and a positive association with lymph node metastasis is observed.
Abstract: An estimated 15% or more of the cancer burden worldwide is attributable to known infectious agents. We screened colorectal carcinoma and matched normal tissue specimens using RNA-seq followed by host sequence subtraction and found marked over-representation of Fusobacterium nucleatum sequences in tumors relative to control specimens. F. nucleatum is an invasive anaerobe that has been linked previously to periodontitis and appendicitis, but not to cancer. Fusobacteria are rare constituents of the fecal microbiota, but have been cultured previously from biopsies of inflamed gut mucosa. We obtained a Fusobacterium isolate from a frozen tumor specimen; this showed highest sequence similarity to a known gut mucosa isolate and was confirmed to be invasive. We verified overabundance of Fusobacterium sequences in tumor versus matched normal control tissue by quantitative PCR analysis from a total of 99 subjects (p = 2.5 × 10(-6)), and we observed a positive association with lymph node metastasis.

1,535 citations

Journal ArticleDOI
TL;DR: The composition of the microbiota in colorectal carcinoma is characterized using whole genome sequences from nine tumor/normal pairs and Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs.
Abstract: The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.

1,527 citations

Journal ArticleDOI
02 Jul 1977-BMJ
TL;DR: Campylobacters are a relatively unrecognised cause of acute enteritis, but these findings suggest that they may be a common cause, and poultry may be the primary source of the organism.
Abstract: By selective culture campylobacters (C jejuni and C coli) were isolated from the faeces of 57 (7-1%) out of 803 unselected patients with diarrhoea; none were isolated from 194 people who had not got diarrhoea. Specific agglutinins were found in the sera of 31 out of 38 patients with campylobacter enteritis and 10 of them had a rising titre. Half the patients were aged 15 to 44 years, but the incidence was highest in young children. All the patients with campylobacters had a distinctive clinical illness with severe abdominal pain. Campylobacters are a relatively unrecognised cause of acute enteritis, but these findings suggest that they may be a common cause. Spread of infection was observed within 12 out of 29 households, and in these cases children were usually implicated. Several patients were apparently infected from chickens, both live and dressed, and poultry may be the primary source of the organism. In two cases dogs with diarrhoea were found to be infected with strains indistinguishable from their human contacts. Ten patients acquired their infections while travelling abroad.

1,431 citations