scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Global food demand and the sustainable intensification of agriculture

TL;DR: Per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960 and forecasts a 100–110% increase in global crop demand from 2005 to 2050.
Abstract: Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100–110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ∼1 billion ha of land would be cleared globally by 2050, with CO2-C equivalent greenhouse gas emissions reaching ∼3 Gt y−1 and N use ∼250 Mt y−1 by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ∼0.2 billion ha, greenhouse gas emissions of ∼1 Gt y−1, and global N use of ∼225 Mt y−1. Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.
Citations
More filters
Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations

Journal ArticleDOI
19 Jun 2013-PLOS ONE
TL;DR: Detailed maps are presented to identify where rates must be increased to boost crop production and meet rising demands, which are far below what is needed to meet projected demands in 2050.
Abstract: Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.

2,404 citations


Cites background from "Global food demand and the sustaina..."

  • ...These four crops together produce about two-thirds of current harvested global crop calories [3,18]....

    [...]

  • ...Alternatively, additional strategies, particularly changing to more plant-based diets and reducing food waste [4,46–48] can reduce the large expected demand growth in food [3,4]....

    [...]

  • ...Thus, if these yield change rates do not increase, land clearing possibly would be needed [3] if global food security is to increase or even maintained (Table 1)....

    [...]

  • ...The only peerreviewed estimate [3] suggests that crop demand may increase by 100%–110% between 2005 and 2050....

    [...]

Journal ArticleDOI
TL;DR: The first global map (228 countries) of antibiotic consumption in livestock is presented and it is projected that antimicrobial consumption will rise by 67% by 2030, and nearly double in Brazil, Russia, India, China, and South Africa.
Abstract: Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg(-1), 148 mg⋅kg(-1), and 172 mg⋅kg(-1) for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health.

2,371 citations


Cites background from "Global food demand and the sustaina..."

  • ...In low- and middle-income countries, rising incomes have driven an unprecedented growth in demand for animal protein (11) and, as a result, the global biomass of animals raised for food now exceeds the global biomass of humans (12)....

    [...]

Journal ArticleDOI
27 Nov 2014-Nature
TL;DR: Alternative diets that offer substantial health benefits could, if widely adopted, reduce global agricultural greenhouse gas emissions, reduce land clearing and resultant species extinctions, and help prevent such diet-related chronic non-communicable diseases.
Abstract: Diets link environmental and human health. Rising incomes and urbanization are driving a global dietary transition in which traditional diets are replaced by diets higher in refined sugars, refined fats, oils and meats. By 2050 these dietary trends, if unchecked, would be a major contributor to an estimated 80 per cent increase in global agricultural greenhouse gas emissions from food production and to global land clearing. Moreover, these dietary shifts are greatly increasing the incidence of type II diabetes, coronary heart disease and other chronic non-communicable diseases that lower global life expectancies. Alternative diets that offer substantial health benefits could, if widely adopted, reduce global agricultural greenhouse gas emissions, reduce land clearing and resultant species extinctions, and help prevent such diet-related chronic non-communicable diseases. The implementation of dietary solutions to the tightly linked diet–environment– health trilemma is a global challenge, and opportunity, of great environmental and public health importance.

2,200 citations

Journal ArticleDOI
11 Oct 2012-Nature
TL;DR: A global-scale assessment of intensification prospects from closing ‘yield gaps’, the spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields finds that global yield variability is heavily controlled by fertilizer use, irrigation and climate.
Abstract: In the coming decades, a crucial challenge for humanity will be meeting future food demands without undermining further the integrity of the Earth’s environmental systems1, 2, 3, 4, 5, 6. Agricultural systems are already major forces of global environmental degradation4, 7, but population growth and increasing consumption of calorie- and meat-intensive diets are expected to roughly double human food demand by 2050 (ref. 3). Responding to these pressures, there is increasing focus on ‘sustainable intensification’ as a means to increase yields on underperforming landscapes while simultaneously decreasing the environmental impacts of agricultural systems2, 3, 4, 8, 9, 10, 11. However, it is unclear what such efforts might entail for the future of global agricultural landscapes. Here we present a global-scale assessment of intensification prospects from closing ‘yield gaps’ (differences between observed yields and those attainable in a given region), the spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields. We find that global yield variability is heavily controlled by fertilizer use, irrigation and climate. Large production increases (45% to 70% for most crops) are possible from closing yield gaps to 100% of attainable yields, and the changes to management practices that are needed to close yield gaps vary considerably by region and current intensity. Furthermore, we find that there are large opportunities to reduce the environmental impact of agriculture by eliminating nutrient overuse, while still allowing an approximately 30% increase in production of major cereals (maize, wheat and rice). Meeting the food security and sustainability challenges of the coming decades is possible, but will require considerable changes in nutrient and water management.

2,099 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations


"Global food demand and the sustaina..." refers background or methods in this paper

  • ...3 billion person increase in global population and greater per capita incomes anticipated through midcentury (1)....

    [...]

  • ...Because of data availability, we use past N fertilization rates as quantitative measures of soil fertility enhancement, but we emphasize that soil fertility can also be enhanced by legumes, cover crops, and other means and that yields could increase with less N fertilizer than in the past if N use efficiency increases (1, 2, 13)....

    [...]

  • ...The increased global yields that could result from various degrees of technology improvement, technology transfer, or N use would meet 2050 crop demand with less cropland clearing (1, 2) (Fig....

    [...]

  • ...Both land clearing and more intensive use of existing croplands could contribute to the increased crop production needed to meet such demand, but the environmental impacts and tradeoffs of these alternative paths of agricultural expansion are unclear (1, 2)....

    [...]

Journal ArticleDOI
08 Aug 2002-Nature
TL;DR: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society.
Abstract: A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global useable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.

6,569 citations


"Global food demand and the sustaina..." refers background in this paper

  • ...The environmental impacts of doubling global crop production will depend on how increased production is achieved (11, 12)....

    [...]

Related Papers (5)
Trending Questions (1)
Is the demand of food increasing?

Yes, the paper states that global food demand is increasing rapidly.