scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Global patterns of tectonic stress

TL;DR: In this article, the authors used regional patterns of present-day tectonic stress to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity, and found that most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions.
Abstract: Regional patterns of present-day tectonic stress can be used to evaluate the forces acting on the lithosphere and to investigate intraplate seismicity. Most intraplate regions are characterized by a compressional stress regime; extension is limited almost entirely to thermally uplifted regions. In several plates the maximum horizontal stress is subparallel to the direction of absolute plate motion, suggesting that the forces driving the plates also dominate the stress distribution in the plate interior.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, more than 7300 in situ stress orientations have been compiled as part of the World Stress Map project and over 4400 are considered reliable tectonic stress indicators, recording horizontal stress orientation to within <±25°.
Abstract: To date, more than 7300 in situ stress orientations have been compiled as part of the World Stress Map project. Of these, over 4400 are considered reliable tectonic stress indicators, recording horizontal stress orientations to within <±25°. Remarkably good correlation is observed between stress orientations deduced from in situ stress measurements and geologic observations made in the upper 1–2 km, well bore breakouts extending to 4–5 km depth and earthquake focal mechanisms to depths of ∼20 km. Regionally uniform stress orientations and relative magnitudes permit definition of broad-scale regional stress patterns often extending 20–200 times the approximately 20–25 km thickness of the upper brittle lithosphere. The “first-order” midplate stress fields are believed to be largely the result of compressional forces applied at plate boundaries, primarily ridge push and continental collision. The orientation of the intraplate stress field is thus largely controlled by the geometry of the plate boundaries. There is no evidence of large lateral stress gradients (as evidenced by lateral variations in stress regime) which would be expected across large plates if simple resistive or driving basal drag tractions (parallel or antiparallel to absolute motion) controlled the intraplate stress field. Intraplate areas of active extension are generally associated with regions of high topography: western U.S. Cordillera, high Andes, Tibetan plateau, western Indian Ocean plateau. Buoyancy stresses related to crustal thickening and/or lithospheric thinning in these regions dominate the intraplate compressional stress field due to plate-driving forces. These buoyancy forces are just one of several categories of “second-order” stresses, or local perturbations, that can be identified once the first-order stress patterns are recognized. These second-order stress fields can often be associated with specific geologic or tectonic features, for example, lithospheric flexure, lateral strength contrasts, as well as the lateral density contrasts which give rise to buoyancy forces. These second-order stress patterns typically have wavelengths ranging from 5 to 10+ times the thickness of the brittle upper lithosphere. A two-dimensional analysis of the amount of rotation of regional horizontal stress orientations due to a superimposed local stress constrains the ratio of the magnitude of the horizontal regional stress differences to the local uniaxial stress. For a detectable rotation of 15°, the local horizontal uniaxial stress must be at least twice the magnitude of the regional horizontal stress differences. Examples of local rotations of SHmax orientations include a 75°–85° rotation on the northeastern Canadian continental shelf possibly related to margin-normal extension derived from sediment-loading flexural stresses, a 50°–60° rotation within the East African rift relative to western Africa due to extensional buoyancy forces caused by lithospheric thinning, and an approximately 90° rotation along the northern margin of the Paleozoic Amazonas rift in central Brazil. In this final example, this rotation is hypothesized as being due to deviatoric compression oriented normal to the rift axis resulting from local lithospheric support of a dense mass in the lower crust beneath the rift (“rift pillow”). Estimates of the magnitudes of first-order (plate boundary force-derived) regional stress differences computed from modeling the source of observed local stress rotations magnitudes can be compared with regional stress differences based on the frictional strength of the crust (i.e., “Byerlee's law”) assuming hydrostatic pore pressure. The examples given here are too few to provide a definitive evaluation of the direct applicability of Byerlee's law to the upper brittle part of the lithosphere, particularly in view of uncertainties such as pore pressure and relative magnitude of the intermediate principal stresses. Nonetheless, the observed rotations all indicate that the magnitude of the local horizontal uniaxial stresses must be 1–2.5+ times the magnitude of the regional first-order horizontal stress differences and suggest that careful evaluation of such local rotations may be a powerful technique for constraining the in situ magnitude stress differences in the upper, brittle part of the lithosphere.

1,685 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider three hypotheses concerning the origin of the continental anisotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes.
Abstract: splitting observations are interpreted in terms of the strain-induced lattice preferred orientation of mantle minerals, especially olivine. We consider three hypotheses concerning the origin of the continental anlsotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes. It is found that the last hypothesis is the most successful, namely that the most recent significant episode of internal deformation appears to be the best predictor of q. For stable continental regions, this is interpreted as "fossil" anisotropy, whereas for presently active regions, such as Alaska, the anisotropy reflects present-day tectonic activity. In the stable portion of North America there is a good correlation between delay time and lithospheric thickness; this is consistent with the anisotropy being localized in the subcontinental lithosphere and suggests that intrinsic anisotropy is approximately constant. The acceptance of this hypothesis has several implications for subcontinental mantle deformation. First, it argues for coherent deformation of the continental lithosphere (crust and mantle) during orogenies. This implies that the anisotropic portion of the lithosphere was present since the deformational episode and rules out the addition of undeformed material to this layer by subsequent "underplating" or conductive growth of the thermal boundary layer. One of the most important issues in the study of orogenies is the need to reconcile the formation of thickened lithosphere with the paradoxically high mantle temperatures often associated with orogenic episodes. Most efforts to date have focussed on modes of deformation whereby the cold lithospheric mantle is removed (by convective instability or delamination) and replaced by warm asthenosphere. These models, however, are incompatible with the evidence for preserved coherent lithospheric deformation; rather, the deformed mantle appears to have been heated in place. We suggest that the elevated mantle temperatures may be due to the strain heating accompanying the deformation.

1,375 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the transport of magma in feeder dykes is characterized by a local balance between buoyancy forces and viscous pressure drop, that elastic forces play a secondary role except near the dyke tip and that the influence of the fracture resistance of crustal rocks on dyke propagation is negligible.
Abstract: The ubiquity of dykes in the Earth's crust is evidence that the transport of magma by fluid-induced fracture of the lithosphere is an important phenomenon. Magma fracture transports melt vertically from regions of production in the mantle to surface eruptions or near-surface magma chambers and then laterally from the magma chambers in dykes and sills. In order to investigate the mechanics of magma fracture, the driving and resisting pressures in a propagating dyke are estimated and the dominant physical balances between these pressures are described. It is shown that the transport of magma in feeder dykes is characterized by a local balance between buoyancy forces and viscous pressure drop, that elastic forces play a secondary role except near the dyke tip and that the influence of the fracture resistance of crustal rocks on dyke propagation is negligible. The local nature of the force balance implies that the local density difference controls the height of magma ascent rather than the total hydrostatic head and hence that magma is emplaced at its level of neutral buoyancy (LNB) in the crust. There is a small overshoot beyond this level which is calculated to be typically a few kilometres. Magma accumulating at the LNB will be intruded in lateral dykes and sills which are directed along the LNB by buoyancy forces since the magma is in gravitational equilibrium at this level. Laboratory analogue experiments demonstrate the physical principle of buoyancy-controlled propagation to and along the LNB. The equations governing the dynamics of magma fracture are solved for the cases of lithospheric ascent and of lateral intrusion. Volatiles are predicted to be exsolved from the melt at the tips of extending fractures due to the generation of low pressures by viscous flow into the tip. Chilling of magma at the edges of a dyke inhibits cross-stream propagation and concentrates the downstream flow into a wider dyke. The family of theoretical solutions in different geometries provides simple models which describe the relation between the elastic and fluid-mechanical phenomena and from which the lengths, widths and rates of propagation can be calculated. The predicted dimensions are in broad agreement with geological observations.

764 citations

MonographDOI
01 Jan 2007

733 citations

Journal ArticleDOI
TL;DR: The World Stress Map (WSM) project is a global compilation of information on the contemporary crustal stress field from a wide range of stress indicators as mentioned in this paper, and the WSM database release 2008 contains 21,750 stress data records that are quality-ranked using an updated and refined quality ranking scheme.

494 citations

References
More filters
Journal ArticleDOI
08 Aug 1975-Science
TL;DR: The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world, supported by libraries, scholarly societies, publishers, and foundations.
Abstract: Stable URL:http://links.jstor.org/sici?sici=0036-8075%2819750808%293%3A189%3A4201%3C419%3ACTOAEO%3E2.0.CO%3B2-NScience is currently published by American Association for the Advancement of Science.Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available athttp://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtainedprior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content inthe JSTOR archive only for your personal, non-commercial use.Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained athttp://www.jstor.org/journals/aaas.html.Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printedpage of such transmission.The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academicjournals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community takeadvantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.http://www.jstor.orgFri Jan 25 16:37:09 2008

3,869 citations

Journal ArticleDOI
TL;DR: In this paper, a simple cooling model and the plate model were proposed to account for the variation in depth and heat flow with increasing age of the ocean floor. But the results were limited to the North Pacific and North Atlantic basins.
Abstract: Two models, a simple cooling model and the plate model, have been advanced to account for the variation in depth and heat flow with increasing age of the ocean floor. The simple cooling model predicts a linear relation between depth and t½, and heat flow and 1/t½, where t is the age of the ocean floor. We show that the same t½ dependence is implicit in the solutions for the plate model for sufficiently young ocean floor. For larger ages these relations break down, and depth and heat flow decay exponentially to constant values. The two forms of the solution are developed to provide a simple method of inverting the data to give the model parameters. The empirical depth versus age relation for the North Pacific and North Atlantic has been extended out to 160 m.y. B.P. The depth initially increases as t½, but between 60 and 80 m.y. B.P. the variation of depth with age departs from this simple relation. For older ocean floor the depth decays exponentially with age toward a constant asymptotic value. Such characteristics would be produced by a thermal structure close to that of the plate model. Inverting the data gives a plate thickness of 125±10 km, a bottom boundary temperature of 1350°±275°C, and a thermal expansion coefficient of (3.2±1.1) × 10−5°C−1. Between 0 and 70 m.y. B.P. the depth can be represented by the relation d(t) = 2500 + 350t½ m, with t in m.y. B.P., and for regions older than 20 m.y. B.P. by the relation d(t) = 6400 - 3200 exp (−t/62.8) m. The heat flow data were treated in a similar, but less extensive manner. Although the data are compatible with the same model that accounts for the topography, their scatter prevents their use in the same quantitative fashion. Our analysis shows that the heat flow only responds to the bottom boundary at approximately twice the age at which the depth does. Within the scatter of the data, from 0 to 120 m.y. B.P., the heat flow pan be represented by the relation q(t) = 11.3/t½ μcal cm−2s−1. The previously accepted view that the heat flow observations approach a constant asymptotic value in the old ocean basins needs to be tested more stringently. The above results imply that a mechanism is required to supply heat at the base of the plate.

2,667 citations

01 Nov 1977
TL;DR: A data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors has been inverted to yield a new instantaneous plate motion model, designated Relative Motion 2 (RM2).
Abstract: A data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors has been inverted to yield a new instantaneous plate motion model, designated Relative Motion 2 (RM2). The model represents a considerable improvement over our previous estimate, RM1 [Minster et al., 1974]. The mean averaging interval for the spreading rate data has been reduced to less than 3 m.y. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. The model systematically misfits data along the India-Antarctica and Pacific-India plate boundaries. We hypothesize that these discrepancies are manifestations of internal deformation within the Indian plate; the data are compatible with northwest-southeast compression across the Ninetyeast Ridge at a rate of about 1 cm/yr. RM2 also fails to satisfy the east-west trending transform fault azimuths observed in the French-American Mid-Ocean Undersea Study area, which is shown to be a consequence of closure constraints about the Azores triple junction. Slow movement between North and South America is required by the data set, although the angular velocity vector describing this motion remains poorly constrained. The existence of a Bering plate, postulated in our previous study, is not necessary if we accept the proposal of Engdahl and others that the Aleutian slip vector data are biased by slab effects. Absolute motion models are derived from several kinematical hypotheses and compared with the data from hot spot traces younger than 10 m.y. Although some of the models are inconsistent with the Wilson-Morgan hypothesis, the overall resolving power of the hot spot data is poor, and the directions of absolute motion for the several slower-moving plates are not usefully constrained.

2,013 citations

Journal ArticleDOI
TL;DR: In this article, a data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2.
Abstract: A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

2,005 citations

Journal ArticleDOI
TL;DR: In this paper, the relative strength of the plausible driving forces, given the observed motions and geometries of the lithospheric plates, was analyzed. But the results indicate that the forces acting on the downgoing slab control the velocity of the oceanic plates and are an order of magnitude stronger than any other force.
Abstract: Summary A number of possible mechanisms have recently been proposed for driving the motions of the lithospheric plates, such as pushing from mid-ocean ridges, pulling by downgoing slabs, suction toward trenches, and coupling of the plates to flow in the mantle. We advance a new observational method of testing these theories of the driving mechanism. Our basic approach is to solve the inverse problem of determining the relative strength of the plausible driving forces, given the observed motions and geometries of the lithospheric plates. Since the inertia of the plates is negligible, each plate must be in dynamic equilibrium, so that the sum of the torques acting on a plate must be zero. Thus, our problem is to determine the relative sizes of the forces that minimize the components of net torque on each plate. The results indicate that the forces acting on the downgoing slab control the velocity of the oceanic plates and are an order of magnitude stronger than any other force. Namely, all the oceanic plates attached to substantial amounts of downgoing slabs move with a ' terminal velocity ' at which the gravitational body force pulling the slabs downward is nearly balanced with the resistance acting on the slab; regardless of the other features of the trailing horizontal part of the plates. The drag on the bottom of the plates which resist motion is stronger under the continents than under the oceans.

1,462 citations