scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Global potential distribution prediction of Xanthium italicum based on Maxent model.

Yang Zhang, Jieshi Tang1, Gang Ren, Kaixin Zhao, Xianfang Wang 
16 Aug 2021-Scientific Reports (Springer Science and Business Media LLC)-Vol. 11, Iss: 1, pp 16545-16545
TL;DR: In this paper, the Maxent model was used to predict current and future climatic conditions to estimate the potential global distribution of the invasive plant Xanthium italicum, and the prediction result of this model was excellent.
Abstract: Alien invasive plants pose a threat to global biodiversity and the cost of control continues to rise. Early detection and prediction of potential risk areas are essential to minimize ecological and socio-economic costs. In this study, the Maxent model was used to predict current and future climatic conditions to estimate the potential global distribution of the invasive plant Xanthium italicum. The model consists of 366 occurrence records (10 repeats, 75% for calibration and 25% for verification) and 10 climate prediction variables. According to the model forecast, the distribution of X. italicum was expected to shrink in future climate scenarios with human intervention, which may be mainly caused by the rise in global average annual temperature. The ROC curve showed that the AUC values of the training set and the test set are 0.965 and 0.906, respectively, indicating that the prediction result of this model was excellent. The contribution rates of annual mean temperature, monthly mean diurnal temperature range, standard deviation of temperature seasonal change and annual average precipitation to the geographical distribution of X. italicum were 65.3%, 11.2%, 9.0%, and 7.7%, respectively, and the total contribution rate was 93.2%. These four variables are the dominant environmental factors affecting the potential distribution of X. italicum, and the influence of temperature is greater than that of precipitation. Through our study on the potential distribution prediction of X. italicum under the future climatic conditions, it has contribution for all countries to strengthen its monitoring, prevention and control, including early warning.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jan 2022-Insects
TL;DR: According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.
Abstract: Simple Summary Helicoverpa zea is one of the most destructive lepidopteran agricultural pests in the world and can disperse long distances both with and without human transportation. It is listed in the catalog of quarantine pests for plants imported to the People’s Republic of China but has not yet been reported in China. On the basis of 1781 global distribution records of H. zea and eight bioclimatic variables, we predicted the potential geographical distributions (PGDs) of H. zea by using a calibrated MaxEnt model. The results showed that the PGDs of H. zea under the current climate are large in China. Future climate changes under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 for both the 2030s and 2050s will facilitate the expansion of PGDs for H. zea. Helicoverpa zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to the host plants of H. zea and containers harboring this pest. Abstract Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People’s Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 × 104 km2, and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.

8 citations

Journal ArticleDOI
TL;DR: In this article, the current and future geographical distribution of common hornbeam under different climate scenarios was modeled by applying machine learning techniques and the differences between the predicted current and potential distribution areas of the species in terms of area and location by means of change analysis.

6 citations

Journal ArticleDOI
TL;DR: The results suggest that multiple introductions and genetic admixture likely play important roles in facilitating the invasion and geographic expansion of P. virginica into China.

4 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used the MaxEnt niche model and ArcGIS to predict the potential distribution of S. guani in China at present and in different periods in the future.
Abstract: Abstract The wasp Scleroderma guani is an important parasitic natural enemy of a variety of stem borers such as longicorn beetles. Studying and clarifying the suitable area of this wasp plays an important role in controlling stem borers. Based on information about the actual distribution of S. guani and on a set of environmental variables, MaxEnt niche model and ArcGIS were exploited to predict the potential distribution of this insect in China. This work simulated the geographical distribution of potential climatic suitability of S. guani in China at present and in different periods in the future. Combining the relative percent contribution score of environmental factors and the Jackknife test, the dominant environmental variables and their appropriate values restricting the potential geographical distribution of S. guani were screened. The results showed that the prediction of the MaxEnt model was highly in line with the actual distribution under current climate conditions, and the simulation accuracy was very high. The distribution of S. guani is mainly affected by bio18 (Precipitation of Warmest Quarter), bio11 (Mean Temperature of Coldest Quarter), bio13 (Precipitation of Wettest Month), and bio3 (Isothermality). The suitable habitat of S. guani in China is mainly distributed in the Northeast China Plain, North China Plain, middle‐lower Yangtze Plain, and Sichuan Basin, with total suitable area of 547.05 × 104 km2, accounting for 56.85% of China’s territory. Furthermore, under the RCP2.6, RCP4.5, and RCP8.5 climate change scenarios in the 2050s and 2090s, the areas of high, medium, and low suitability showed different degrees of change compared to nowadays, exhibiting expansion trend in the future. This work provides theoretical support for related research on pest control and ecological protection.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations

Journal ArticleDOI
03 Jun 1988-Science
TL;DR: For diagnostic systems used to distinguish between two classes of events, analysis in terms of the "relative operating characteristic" of signal detection theory provides a precise and valid measure of diagnostic accuracy.
Abstract: Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially "signals" and "noise". For them, analysis in terms of the "relative operating characteristic" of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.

8,569 citations

Journal ArticleDOI
TL;DR: A new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century, based on recent data sets from the Climatic Research Unit of the University of East Anglia and the Global Precipitation Climatology Centre at the German Weather Service.
Abstract: The most frequently used climate classification map is that o f Wladimir Koppen, presented in its latest version 1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a former release of the Koppen-Geiger map. While the climate classification concept has been widely applied to a broad range of topics in climate and climate change research as well as in physical geography, hydrology, agriculture, biology and educational aspects, a well-documented update of the world climate classification map is still missing. Based on recent data sets from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation Climatology Centre (GPCC) at the German Weather Service, we present here a new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century. Zusammenfassung Die am haufigsten verwendete Klimaklassifikationskarte ist jene von Wladimir Koppen, die in der letzten Auflage von Rudolf Geiger aus dem Jahr 1961 vorliegt. Seither bildeten viele Klimabucher und Fachartikel diese oder eine fruhere Ausgabe der Koppen-Geiger Karte ab. Obwohl das Schema der Klimaklassifikation in vielen Forschungsgebieten wie Klima und Klimaanderung aber auch physikalische Geographie, Hydrologie, Landwirtschaftsforschung, Biologie und Ausbildung zum Einsatz kommt, fehlt bis heute eine gut dokumentierte Aktualisierung der Koppen-Geiger Klimakarte. Basierend auf neuesten Datensatzen des Climatic Research Unit (CRU) der Universitat von East Anglia und des Weltzentrums fur Niederschlagsklimatologie (WZN) am Deutschen Wetterdienst prasentieren wir hier eine neue digitale Koppen-Geiger Weltkarte fur die zweite Halfte des 20. Jahrhunderts.

7,820 citations

Journal ArticleDOI
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

7,589 citations

Journal ArticleDOI
TL;DR: Thirteen recommendations are made to enable the objective selection of an error assessment technique for ecological presence/absence models and a new approach to estimating prediction error, which is based on the spatial characteristics of the errors, is proposed.
Abstract: Predicting the distribution of endangered species from habitat data is frequently perceived to be a useful technique. Models that predict the presence or absence of a species are normally judged by the number of prediction errors. These may be of two types: false positives and false negatives. Many of the prediction errors can be traced to ecological processes such as unsaturated habitat and species interactions. Consequently, if prediction errors are not placed in an ecological context the results of the model may be misleading. The simplest, and most widely used, measure of prediction accuracy is the number of correctly classified cases. There are other measures of prediction success that may be more appropriate. Strategies for assessing the causes and costs of these errors are discussed. A range of techniques for measuring error in presence/absence models, including some that are seldom used by ecologists (e.g. ROC plots and cost matrices), are described. A new approach to estimating prediction error, which is based on the spatial characteristics of the errors, is proposed. Thirteen recommendations are made to enable the objective selection of an error assessment technique for ecological presence/absence models.

6,044 citations