scispace - formally typeset
Search or ask a question
DOI

Global Volcanism Program. Volcanoes of the World, v. 4.9.1 (17 Sep 2020)

01 Jan 2013-
About: The article was published on 2013-01-01. It has received 238 citations till now. The article focuses on the topics: Global Volcanism Program.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the temporal and latitudinal distribution of volcanic SO 2 emissions and reassess the relationship between eruptive SO 2 discharge and eruption magnitude, finding a first-order correlation between SO 2 emission and volcanic explosivity index (VEI), but with significant scatter.

243 citations

Journal ArticleDOI
TL;DR: The application of advanced remote sensing technologies, including terrestrial laser scanning (TLS), to the Earth sciences has increased rapidly in the last two decades, improving the spatial and temporal resolution of data as mentioned in this paper.

154 citations

Journal ArticleDOI
TL;DR: The eVolv2k database as discussed by the authors includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years.
Abstract: . The injection of sulfur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulfate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The database incorporates improvements to the ice core records (in terms of synchronisation and dating) and refinements to the methods used to estimate VSSI from ice core records, and it includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815), and Laki (1783), are within 10 % of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682, and 1108 CE. The long-term annual mean VSSI from major volcanic eruptions is estimated to be ∼ 0.5 Tg [S] yr−1, ∼ 50 % greater than a prior reconstruction due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33 %) to a prior reconstruction for most of the largest eruptions. The long-term (500 BCE–1900 CE) average global mean SAOD estimated from the eVolv2k VSSI estimates including a constant background injection of stratospheric sulfur is ∼ 0.014, 30 % greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14 % less, respectively, than the mean of the 500 BCE to 1900 CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2 .

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization, and estimate the thermal energy available by estimating subsurface temperatures up to a depth of three kilometres depending on aquifer thickness.
Abstract: In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a volumetric heat-in-place method to improve current global geothermal resource base estimates for direct heat applications. The amount of thermal energy stored within aquifers depends on the Earth's heat flow, aquifer volume, and thermal properties. We assess the thermal energy available by estimating subsurface temperatures up to a depth of three kilometer depending on aquifer thickness. The distribution of geothermal resources is displayed in a series of maps and the depth of the minimum production temperature is used as an indicator of performance and technical feasibility. Suitable aquifers underlay 16% of the Earth's land surface and store an estimated 4·105 to 5·106 EJ that could theoretically be used for direct heat applications. Even with a conservative recovery factor of 1% and an assumed lifetime of 30 years, the annual recoverable geothermal energy is in the same order as the world final energy consumption of 363.5 EJ yr−1. Although the amount of geothermal energy stored in aquifers is vast, geothermal direct heat applications are currently underdeveloped with less than one thousandth of their technical potential used.

145 citations

Journal ArticleDOI
20 Sep 2017
TL;DR: In this paper, the authors identify the distance and distribution of fatalities around volcanoes and the activities of the victims at the time of impact, sourced from an extensive search of academic and grey literature, including media and official reports.
Abstract: Volcanoes can produce far-reaching hazards that extend distances of tens or hundreds of kilometres in large eruptions, or in certain conditions for smaller eruptions. About a tenth of the world’s population lives within the potential footprint of volcanic hazards and lives are regularly lost through volcanic activity: volcanic fatalities were recorded in 18 of the last 20 years. This paper identifies the distance and distribution of fatalities around volcanoes and the activities of the victims at the time of impact, sourced from an extensive search of academic and grey literature, including media and official reports. We update and expand a volcano fatality database to include all data from 1500 AD to 2017. This database contains 635 records of 278,368 fatalities. Each record contains information on the number of fatalities, fatal cause, incident date and the fatality location in terms of distance from the volcano. Distance data were previously available in just 5% of fatal incidents: these data have been significantly increased to 72% (456/635) of fatal incidents, with fatalities recorded from inside the crater to more than 100 km from the summit. Local residents are the most frequently killed, but tourists, volcanologists and members of the media are also identified as common victims. These latter groups and residents of small islands dominate the proximal fatality record up to 5 km from the volcano. Though normally accounting for small numbers of fatalities, ballistics are the most common cause of fatal incidents at this distance. Pyroclastic density currents are the dominant fatal cause at 5 to 15 km. Lahars, tsunami and tephra dominate the record after about 15 km. The new location data are used to characterise volcanic threat with distance, as a function of eruption size and hazard type, and to understand how certain activities increase exposure and the likelihood of death. These findings support assessment of volcanic threat, population exposure and vulnerabilities related to occupation or activity.

125 citations