scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase.

01 Apr 1990-Proceedings of the National Academy of Sciences of the United States of America (National Academy of Sciences)-Vol. 87, Iss: 8, pp 2936-2940
TL;DR: Oxygen-uptake experiments show that purified GLOX is inactive unless coupled to the peroxidase reaction, and the importance of these results is discussed in relation to the physiology of lignin biodegradation and possible extracellular regulatory mechanisms for the control of oxidase and per oxidase activities.
Abstract: Glyoxal oxidase (GLOX) is an extracellular H2O2-generating enzyme produced by ligninolytic cultures of Phanerochaete chrysosporium. The production, purification, and partial characterization of GLOX from agitated cultures are described here. High-oxygen levels are critical for GLOX production as for lignin peroxidase. GLOX purified by anion-exchange chromatography appears homogeneous by NaDod-SO4/PAGE (molecular mass = 68 kDa). However, analysis by isoelectric focusing indicates two major bands (pI 4.7 and 4.9) that stain as glycoproteins as well as for H2O2-producing activity in the presence of methylglyoxal. Purified GLOX shows a marked stimulation in activity when incubated with Cu2+; full activation takes more than 1 hr with 1 mM CuSO4 at pH 6. The steady-state kinetic parameters for the GLOX oxidation of methylglyoxal, glyceraldehyde, dihydroxyacetone, glycolaldehyde, acetaldehyde, glyoxal, glyoxylic acid, and formaldehyde, were determined by using a lignin peroxidase coupled-assay at pH 4.5. Of these substrates, the best is the extracellular metabolite methylglyoxal with a Km of 0.64 mM an apparent rate of catalysis, kcat, of 198 s1 under air-saturated conditions. The Km for oxygen is greater than the concentration of oxygen possible at ambient pressure--i.e., >1.3 mM at 25 degrees C. Importantly, oxygen-uptake experiments show that purified GLOX is inactive unless coupled to the peroxidase reaction. With this coupled reaction, for each mol of methylglyoxal, veratryl alcohol (a lignin peroxidase substrate), and oxygen consumed, 1 mol each of pyruvate and veratraldehyde is produced. The importance of these results is discussed in relation to the physiology of lignin biodegradation and possible extracellular regulatory mechanisms for the control of oxidase and peroxidase activities.
Citations
More filters
Journal ArticleDOI
TL;DR: The most efficient lignin degraders, estimated by 14CO2 evolution from 14C-[Ring]-labelled synthetic lign in (DHP), belong to the first group, whereas many of the most selective lignIn-degrading fungi belong toThe second, although only moderate to good [14C]DHP mineralization is obtained using fungi from this group.
Abstract: White-rot fungi produce extracellular lignin-modifying enzymes, the best characterized of which are laccase (EC 1.10.3.2), lignin peroxidases (EC 1.11.1.7) and manganese peroxidases (EC 1.11.1.7). Lignin biodegradation studies have been carried out mostly using the white-rot fungus Phanerochaete chrysosporium which produces multiple isoenzymes of lignin peroxidase and manganese peroxidase but does not produce laccase. Many other white-rot fungi produce laccase in addition to lignin and manganese peroxidases and in varying combinations. Based on the enzyme production patterns of an array of white-rot fungi, three categories of fungi are suggested: (i) lignin-manganese peroxidase group (e.g.P. chrysosporium and Phlebia radiata), (ii) manganese peroxidase-laccase group (e.g. Dichomitus squalens and Rigidoporus lignosus), and (iii) lignin peroxidase-laccase group (e.g. Phlebia ochraceofulva and Junghuhnia separabilima). The most efficient lignin degraders, estimated by 14CO2 evolution from 14C-[Ring]-labelled synthetic lignin (DHP), belong to the first group, whereas many of the most selective lignin-degrading fungi belong to the second, although only moderate to good [14C]DHP mineralization is obtained using fungi from this group. The lignin peroxidase-laccase fungi only poorly degrade [14C]DHP.

1,112 citations

Journal ArticleDOI
TL;DR: Broadening the knowledge of lignocellulose biodegradation processes should contribute to better control of wood-decaying fungi, as well as to the development of new biocatalysts of industrial interest based on these organisms and their enzymes.
Abstract: Wood is the main renewable material on Earth and is largely used as building material and in paper-pulp manufacturing. This review describes the composition of lignocellulosic materials, the different processes by which fungi are able to alter wood, including decay patterns caused by white, brown, and soft-rot fungi, and fungal staining of wood. The chemical, enzymatic, and molecular aspects of the fungal attack of lignin, which represents the key step in wood decay, are also discussed. Modern analytical techniques to investigate fungal degradation and modification of the lignin polymer are reviewed, as are the different oxidative enzymes (oxidoreductases) involved in lignin degradation. These include laccases, high redox potential ligninolytic peroxidases (lignin peroxidase, manganese peroxidase, and versatile peroxidase), and oxidases. Special emphasis is given to the reactions catalyzed, their synergistic action on lignin, and the structural bases for their unique catalytic properties. Broadening our knowledge of lignocellulose biodegradation processes should contribute to better control of wood-decaying fungi, as well as to the development of new biocatalysts of industrial interest based on these organisms and their enzymes. [Int Microbiol 2005; 8(3):195-204]

1,055 citations

Journal ArticleDOI
TL;DR: The sequenced genome of Phanerochaete chrysosporium strain RP78 reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay, and provides a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching.
Abstract: White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.

883 citations

Journal ArticleDOI
TL;DR: A detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion.
Abstract: Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.

540 citations


Cites background from "Glyoxal oxidase of Phanerochaete ch..."

  • ...Moreover, GLOX was suggested to regulate peroxidase activity and be activated in vitro by the presence of LiP (Kersten 1990)....

    [...]

  • ...The best-characterized GLOX (MW = 68 kDa) is an enzyme isolated from Phanerochaete chrysosporium; however, the genes coding for GLOX were found in many other white rot fungi (Kersten 1990)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.

225,085 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of IGNIN as a stimulus and its applications in medicine and physiology, and discusses the role that IGNIN plays in the development of disease and its role in medicine.
Abstract: INTRODUCTION ....................................................................................................................................... 465 LIGNIN AS A SUBSTRATE ............................................................................................................................... 466 MICROBIOLOGY OF LIGNIN BIODEGRADATI ON ........................................................................... 468 Anaerobic Conditions ............................................................................................................................... 469 Aerobic Conditions ................................................................................................................................... 469 LIGNIN DEGRADATION BY WHITEROT FUNGI ............................................................................. 471 Physiology .......................................................................................................................................................... 472 Biochemistry ............................................................................................................................................ 475 Genetics ..............................................................................................................................................................486 Molecular Biology .................................................................................................................................... 489 CONCLUSIONS AND RECOMMENDATIONS ..................................................................................... 491 ENZYMATIC “COMBUSTION” ........................................................................................................................ 493

2,556 citations

Journal ArticleDOI
TL;DR: An extracellular lignin-degrading enzyme from the basidiomycete Phanerochaete chrysosporium Burdsall was purified to homogeneity by ion-exchange chromatography, finding that it is an oxygenase, unique in its requirement for H(2)O(2).
Abstract: An extracellular lignin-degrading enzyme from the basidiomycete Phanerochaete chrysosporium Burdsall was purified to homogeneity by ion-exchange chromatography. The 42,000-dalton ligninase contains one protoheme IX per molecule. It catalyzes, nonstereospecifically, several oxidations in the alkyl side chains of lignin-related compounds: Cα—Cβ cleavage in lignin-related compounds of the type aryl—CαHOH—CβHR—CγH2OH (R = -aryl or -O-aryl), oxidation of benzyl alcohols to aldehydes or ketones, intradiol cleavage in phenylglycol structures, and hydroxylation of benzylic methylene groups. It also catalyzes oxidative coupling of phenols, perhaps explaining the long-recognized association between phenol oxidation and lignin degradation. All reactions require H2O2. The Cα—Cβ cleavage and methylene hydroxylation reactions involve substrate oxygenation; the oxygen atom is from O2 and not H2O2. Thus the enzyme is an oxygenase, unique in its requirement for H2O2.

1,258 citations

Journal ArticleDOI
12 Aug 1983-Science
TL;DR: The extracellular fluid of ligninolytic cultures of the wood-decomposing basidiomycete Phanerochaete chrysosporium Burds contains an enzyme that degrades lignin substructure model compounds as well as spruce and birch lignins.
Abstract: The extracellular fluid of ligninolytic cultures of the wood-decomposing basidiomycete Phanerochaete chrysosporium Burds. contains an enzyme that degrades lignin substructure model compounds as well as spruce and birch lignins. It has a molecular size of 42,000 daltons and requires hydrogen peroxide for activity.

1,230 citations

Journal ArticleDOI
TL;DR: A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified and the absorption spectrum of the enzyme indicates the presence of a heme prosthetic group.

716 citations