scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model

17 Dec 2010-Atmospheric Chemistry and Physics (Copernicus GmbH)-Vol. 10, Iss: 24, pp 12059-12072
TL;DR: In this article, a two-step DOAS approach was used to calculate glyoxal vertical column densities from nadir backscattered radiances measured from 2007 to 2009 by the spaceborne GOME-2/METOP-A sensor.
Abstract: . Glyoxal vertical column densities have been retrieved from nadir backscattered radiances measured from 2007 to 2009 by the spaceborne GOME-2/METOP-A sensor. The retrieval algorithm is based on the DOAS technique and optimized settings have been used to determine glyoxal slant columns. The liquid water absorption is accounted for using a two-step DOAS approach, leading to a drastic improvement of the fit quality over remote clear water oceans. Air mass factors are calculated by means of look-up tables of weighting functions pre-calculated with the LIDORT v3.3 radiative transfer model and using a priori glyoxal vertical distributions provided by the IMAGESv2 chemical transport model. The total error estimate comprises random and systematic errors associated to the DOAS fit, the air mass factor calculation and the cloud correction. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source, most probably of biogenic origin.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors.
Abstract: . We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV–visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2–O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004–2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed, such as an increase of the columns in India and central–eastern China, and a decrease in the eastern US and Europe. We find that the higher horizontal resolution of OMI combined with a better sampling and a more favourable illumination at midday allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.

161 citations

Journal ArticleDOI
TL;DR: In this paper, an improved GOME-2 NO2 retrieval is described which reduces the scatter of the individual NO2 columns globally but in particular in the region of the Southern Atlantic Anomaly.
Abstract: . Satellite observations of nitrogen dioxide (NO2) provide valuable information on both stratospheric and tropospheric composition. Nadir measurements from GOME, SCIAMACHY, OMI, and GOME-2 have been used in many studies on tropospheric NO2 burdens, the importance of different NOx emissions sources and their change over time. The observations made by the three GOME-2 instruments will extend the existing data set by more than a decade, and a high quality of the data as well as their good consistency with existing time series is of particular importance. In this paper, an improved GOME-2 NO2 retrieval is described which reduces the scatter of the individual NO2 columns globally but in particular in the region of the Southern Atlantic Anomaly. This is achieved by using a larger fitting window including more spectral points, and by applying a two step spike removal algorithm in the fit. The new GOME-2 data set is shown to have good consistency with SCIAMACHY NO2 columns. Remaining small differences are shown to be linked to changes in the daily solar irradiance measurements used in both GOME-2 and SCIAMACHY retrievals. In the large retrieval window, a not previously identified spectral signature was found which is linked to deserts and other regions with bare soil. Inclusion of this empirically derived pseudo cross-section significantly improves the retrievals and potentially provides information on surface properties and desert aerosols. Using the new GOME-2 NO2 data set, a long-term average of tropospheric columns was computed and high-pass filtered. The resulting map shows evidence for pollution from several additional shipping lanes, not previously identified in satellite observations. This illustrates the excellent signal to noise ratio achievable with the improved GOME-2 retrievals.

131 citations

Journal ArticleDOI
TL;DR: The first detection of glyoxal (CHOCHO) over the tropical Pacific Ocean in the Marine Boundary Layer (MBL) was made by means of the University of Colorado Ship Multi-Axis Differential Optical Absorption Spectroscopy (CU SMAX-DOAS) instrument aboard the research vessel Ronald H. Brown as mentioned in this paper.
Abstract: . We present the first detection of glyoxal (CHOCHO) over the remote tropical Pacific Ocean in the Marine Boundary Layer (MBL). The measurements were conducted by means of the University of Colorado Ship Multi-Axis Differential Optical Absorption Spectroscopy (CU SMAX-DOAS) instrument aboard the research vessel Ronald H. Brown. The research vessel was on a cruise in the framework of the VAMOS Ocean-Cloud-Atmosphere-Land Study – Regional Experiment (VOCALS-REx) and the Tropical Atmosphere Ocean (TAO) projects lasting from October 2008 through January 2009 (74 days at sea). The CU SMAX-DOAS instrument features a motion compensation system to characterize the pitch and roll of the ship and to compensate for ship movements in real time. We found elevated mixing ratios of up to 140 ppt CHOCHO located inside the MBL up to 3000 km from the continental coast over biologically active upwelling regions of the tropical Eastern Pacific Ocean. This is surprising since CHOCHO is very short lived (atmospheric life time ~2 h) and highly water soluble (Henry's Law constant H = 4.2 × 105 M/atm). This CHOCHO cannot be explained by transport of it or its precursors from continental sources. Rather, the open ocean must be a source for CHOCHO to the atmosphere. Dissolved Organic Matter (DOM) photochemistry in surface waters is a source for Volatile Organic Compounds (VOCs) to the atmosphere, e.g. acetaldehyde. The extension of this mechanism to very soluble gases, like CHOCHO, is not straightforward since the air-sea flux is directed from the atmosphere into the ocean. For CHOCHO, the dissolved concentrations would need to be extremely high in order to explain our gas-phase observations by this mechanism (40–70 μM CHOCHO, compared to ~0.01 μM acetaldehyde and 60–70 μM DOM). Further, while there is as yet no direct measurement of VOCs in our study area, measurements of the CHOCHO precursors isoprene, and/or acetylene over phytoplankton bloom areas in other parts of the oceans are too low (by a factor of 10–100) to explain the observed CHOCHO amounts. We conclude that our CHOCHO data cannot be explained by currently understood processes. Yet, it supports first global source estimates of 20 Tg/year CHOCHO from the oceans, which likely is a significant source of secondary organic aerosol (SOA). This chemistry is currently not considered by atmospheric models.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a new dataset of formaldehyde vertical columns retrieved from observations of GOME-2 on board the EUMETSAT MetOp-A platform between 2007 and 2011.
Abstract: . We present a new dataset of formaldehyde vertical columns retrieved from observations of GOME-2 on board the EUMETSAT MetOp-A platform between 2007 and 2011. The new retrieval scheme, which has been optimised for GOME-2, includes a two-step fitting procedure that strongly reduces the impact of spectral interferences between H2CO and BrO, and a modified DOAS approach that better handles ozone absorption effects at moderately low sun elevations. Owing to these new features, the noise in the H2CO slant columns is reduced by up to 40% in comparison to baseline retrieval settings used operationally. Also, the previously reported underestimation of the H2CO columns in tropical and mid-latitude regions has been largely eliminated, improving the agreement with coincident SCIAMACHY observations. To compensate for the drift of the GOME-2 slit function and to mitigate the instrumental degradation effects on H2CO retrievals, an asymmetric Gaussian line-shape is fitted during the irradiance calibration. Additionally, external parameters used in the tropospheric air mass factor computation (surface reflectances, cloud parameters and a priori profile shapes of H2CO) have been updated using most recent databases. Similar updates were also applied to the historical datasets of GOME and SCIAMACHY, leading to the generation of a consistent multi-mission H2CO data record covering the time period from 1997 until 2011. Comparing the resulting time series of monthly averaged H2CO vertical columns in 12 large regions worldwide, the correlation coefficient between SCIAMACHY and GOME-2 columns is generally higher than 0.8 in the overlap period, and linear regression slopes differ by less than 10% from unity in most of the regions. In comparison to SCIAMACHY, the largely improved spatial sampling of GOME-2 allows for a better characterisation of formaldehyde distribution at the regional scale and/or at shorter timescales, leading to a better identification of the emission sources of non-methane volatile organic compounds.

119 citations

Journal ArticleDOI
TL;DR: In this paper, the results of two research flights (RF12, RF17) over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project are presented.
Abstract: . Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O2–O2 collision complexes (O4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VCSEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2–0.55 pptv IO and 32–36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and aircraft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6° N; 101.2 to 97.4° W). At 14.5 km, 5–10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12–20 degrees of freedom (DoF) and up to 500 m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 × 1013 molec cm−2 (RF12) and at least 0.5 × 1013 molec cm−2 (RF17, 0–10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 × 1012 molec cm−2 (RF12) and 2.5 × 1012 molec cm−2 (RF17) and glyoxal VCDs of 2.6 × 1014 molec cm−2 (RF12) and 2.7 × 1014 molec cm−2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 ± 5%, 0.1–0.2 pptv; glyoxal: 52 ± 5%, 3–20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere.

91 citations

References
More filters
Book ChapterDOI
02 Dec 2011

11 citations

01 Jan 1970

6 citations

01 Jul 2008

5 citations


"Glyoxal vertical columns from GOME-..." refers result in this paper

  • ...Also, the total systematic errors associated to each measurement have been calculated using the formalism ofRodgers(2000) and are consistent with the results derived from the sensitivity tests (see also Theys et al. (2007); De Smedt et al....

    [...]

  • ...Also, the total systematic errors associated to each measurement have been calculated using the formalism ofRodgers(2000) and are consistent with the results derived from the sensitivity tests (see also Theys et al....

    [...]

Related Papers (5)