scispace - formally typeset
Open AccessProceedings ArticleDOI

Going deeper with convolutions

Reads0
Chats0
TLDR
Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Journal ArticleDOI

ImageNet classification with deep convolutional neural networks

TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
References
More filters
Proceedings ArticleDOI

HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences

TL;DR: A new descriptor for activity recognition from videos acquired by a depth sensor is presented that better captures the joint shape-motion cues in the depth sequence, and thus outperforms the state-of-the-art on all relevant benchmarks.
Proceedings ArticleDOI

Fast cost-volume filtering for visual correspondence and beyond

TL;DR: This paper proposes a generic and simple framework comprising three steps: constructing a cost volume, fast cost volume filtering and winner-take-all label selection, and achieves state-of-the-art results that achieve disparity maps in real-time, and optical flow fields with very fine structures as well as large displacements.
Journal ArticleDOI

Articulated Human Detection with Flexible Mixtures of Parts

TL;DR: A general, flexible mixture model that jointly captures spatial relations between part locations and co-occurrence Relations between part mixtures, augmenting standard pictorial structure models that encode just spatial relations.
Posted Content

Predicting Parameters in Deep Learning

TL;DR: In this paper, the redundancy in the parameterization of deep learning models is demonstrated and it is shown that given only a few weight values for each feature it is possible to accurately predict the remaining values.
Book ChapterDOI

Modeling temporal structure of decomposable motion segments for activity classification

TL;DR: A framework for modeling motion by exploiting the temporal structure of the human activities, which represents activities as temporal compositions of motion segments, and shows that the algorithm performs better than other state of the art methods.
Related Papers (5)