scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations

References
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work addresses the problem of head pose estimation from depth data, which can be captured using the ever more affordable 3D sensing technologies available today, by proposing to use random regression forests for the task at hand.
Abstract: Fast and reliable algorithms for estimating the head pose are essential for many applications and higher-level face analysis tasks. We address the problem of head pose estimation from depth data, which can be captured using the ever more affordable 3D sensing technologies available today. To achieve robustness, we formulate pose estimation as a regression problem. While detecting specific face parts like the nose is sensitive to occlusions, learning the regression on rather generic surface patches requires enormous amount of training data in order to achieve accurate estimates. We propose to use random regression forests for the task at hand, given their capability to handle large training datasets. Moreover, we synthesize a great amount of annotated training data using a statistical model of the human face. In our experiments, we show that our approach can handle real data presenting large pose changes, partial occlusions, and facial expressions, even though it is trained only on synthetic neutral face data. We have thoroughly evaluated our system on a publicly available database on which we achieve state-of-the-art performance without having to resort to the graphics card.

501 citations

Journal ArticleDOI
TL;DR: An efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains is proposed and it is found that signals with more economical wavelet representations require less Fourier shrinkage.
Abstract: We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.

480 citations

Proceedings ArticleDOI
23 Jun 2013
TL;DR: A filtering method to extract STIPs from depth videos (called DSTIP) that effectively suppress the noisy measurements is presented and a novel depth cuboid similarity feature (DCSF) is built to describe the local 3D depth cuboids around the DSTips with an adaptable supporting size.
Abstract: Local spatio-temporal interest points (STIPs) and the resulting features from RGB videos have been proven successful at activity recognition that can handle cluttered backgrounds and partial occlusions. In this paper, we propose its counterpart in depth video and show its efficacy on activity recognition. We present a filtering method to extract STIPs from depth videos (called DSTIP) that effectively suppress the noisy measurements. Further, we build a novel depth cuboid similarity feature (DCSF) to describe the local 3D depth cuboid around the DSTIPs with an adaptable supporting size. We test this feature on activity recognition application using the public MSRAction3D, MSRDailyActivity3D datasets and our own dataset. Experimental evaluation shows that the proposed approach outperforms state-of-the-art activity recognition algorithms on depth videos, and the framework is more widely applicable than existing approaches. We also give detailed comparisons with other features and analysis of choice of parameters as a guidance for applications.

467 citations

Proceedings Article
04 Dec 2006
TL;DR: This work addresses the problem of blind motion deblurring from a single image, caused by a few moving objects, and relies on the observation that the statistics of derivative filters in images are significantly changed by blur.
Abstract: We address the problem of blind motion deblurring from a single image, caused by a few moving objects. In such situations only part of the image may be blurred, and the scene consists of layers blurred in different degrees. Most of of existing blind deconvolution research concentrates at recovering a single blurring kernel for the entire image. However, in the case of different motions, the blur cannot be modeled with a single kernel, and trying to deconvolve the entire image with the same kernel will cause serious artifacts. Thus, the task of deblurring needs to involve segmentation of the image into regions with different blurs. Our approach relies on the observation that the statistics of derivative filters in images are significantly changed by blur. Assuming the blur results from a constant velocity motion, we can limit the search to one dimensional box filter blurs. This enables us to model the expected derivatives distributions as a function of the width of the blur kernel. Those distributions are surprisingly powerful in discriminating regions with different blurs. The approach produces convincing deconvolution results on real world images with rich texture.

459 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A new model that allows encoding of flexible relations between labels is developed that can significantly improve object classification by exploiting the label relations and a probabilistic classification model based on HEX graphs is proposed.
Abstract: In this paper we study how to perform object classification in a principled way that exploits the rich structure of real world labels. We develop a new model that allows encoding of flexible relations between labels. We introduce Hierarchy and Exclusion (HEX) graphs, a new formalism that captures semantic relations between any two labels applied to the same object: mutual exclusion, overlap and subsumption. We then provide rigorous theoretical analysis that illustrates properties of HEX graphs such as consistency, equivalence, and computational implications of the graph structure. Next, we propose a probabilistic classification model based on HEX graphs and show that it enjoys a number of desirable properties. Finally, we evaluate our method using a large-scale benchmark. Empirical results demonstrate that our model can significantly improve object classification by exploiting the label relations.

448 citations