scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: A large, deep convolutional neural network was trained to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes and employed a recently developed regularization method called "dropout" that proved to be very effective.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully connected layers we employed a recently developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

33,301 citations

References
More filters
Proceedings Article
08 Dec 2008
TL;DR: This work develops a statistical framework for the simultaneous, unsupervised segmentation and discovery of visual object categories from image databases, and uses Gaussian processes to discover spatially contiguous segments which respect image boundaries.
Abstract: We develop a statistical framework for the simultaneous, unsupervised segmentation and discovery of visual object categories from image databases Examining a large set of manually segmented scenes, we show that object frequencies and segment sizes both follow power law distributions, which are well modeled by the Pitman-Yor (PY) process This nonparametric prior distribution leads to learning algorithms which discover an unknown set of objects, and segmentation methods which automatically adapt their resolution to each image Generalizing previous applications of PY processes, we use Gaussian processes to discover spatially contiguous segments which respect image boundaries Using a novel family of variational approximations, our approach produces segmentations which compare favorably to state-of-the-art methods, while simultaneously discovering categories shared among natural scenes

202 citations

Proceedings Article
01 Jan 2015
TL;DR: A novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling to world- scale modeling using just a single computer.
Abstract: We propose a novel, large-scale, structure-from-motion framework that advances the state of the art in data scalability from city-scale modeling (millions of images) to world-scale modeling (several tens of millions of images) using just a single computer. The main enabling technology is the use of a streaming-based framework for connected component discovery. Moreover, our system employs an adaptive, online, iconic image clustering approach based on an augmented bag-of-words representation, in order to balance the goals of registration, comprehensiveness, and data compactness. We demonstrate our proposal by operating on a recent publicly available 100 million image crowdsourced photo collection containing images geographically distributed throughout the entire world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability.

200 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This work introduces a new volume-based metric that includes the important aspect of temporal consistency, that can deal with segmentation hierarchies, and that reflects the tradeoff between over-segmentation and segmentation accuracy.
Abstract: Video segmentation research is currently limited by the lack of a benchmark dataset that covers the large variety of sub problems appearing in video segmentation and that is large enough to avoid over fitting. Consequently, there is little analysis of video segmentation which generalizes across subtasks, and it is not yet clear which and how video segmentation should leverage the information from the still-frames, as previously studied in image segmentation, alongside video specific information, such as temporal volume, motion and occlusion. In this work we provide such an analysis based on annotations of a large video dataset, where each video is manually segmented by multiple persons. Moreover, we introduce a new volume-based metric that includes the important aspect of temporal consistency, that can deal with segmentation hierarchies, and that reflects the tradeoff between over-segmentation and segmentation accuracy.

194 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: This paper proposes a new energy model simultaneously estimating motion flow and the latent image based on robust total variation (TV)-L1 model, and addresses the problem of the traditional coarse-to-fine deblurring framework, which gives rise to artifacts when restoring small structures with distinct motion.
Abstract: Most state-of-the-art dynamic scene deblurring methods based on accurate motion segmentation assume that motion blur is small or that the specific type of motion causing the blur is known. In this paper, we study a motion segmentation-free dynamic scene deblurring method, which is unlike other conventional methods. When the motion can be approximated to linear motion that is locally (pixel-wise) varying, we can handle various types of blur caused by camera shake, including out-of-plane motion, depth variation, radial distortion, and so on. Thus, we propose a new energy model simultaneously estimating motion flow and the latent image based on robust total variation (TV)-L1 model. This approach is necessary to handle abrupt changes in motion without segmentation. Furthermore, we address the problem of the traditional coarse-to-fine deblurring framework, which gives rise to artifacts when restoring small structures with distinct motion. We thus propose a novel kernel re-initialization method which reduces the error of motion flow propagated from a coarser level. Moreover, a highly effective convex optimization-based solution mitigating the computational difficulties of the TV-L1 model is established. Comparative experimental results on challenging real blurry images demonstrate the efficiency of the proposed method.

193 citations

Proceedings ArticleDOI
26 Dec 2007
TL;DR: A novel approach to automatically find spatial configurations of local features occurring frequently on instances of a given object class, and rarely on the background, to facilitate the tasks of higher-level processing stages such as object detection.
Abstract: We present a novel approach to automatically find spatial configurations of local features occurring frequently on instances of a given object class, and rarely on the background. The approach is based on computationally efficient data mining techniques and can find frequent configurations among tens of thousands of candidates within seconds. Based on the mined configurations we develop a method to select features which have high probability of lying on previously unseen instances of the object class. The technique is meant as an intermediate processing layer to filter the large amount of clutter features returned by low- level feature extraction, and hence to facilitate the tasks of higher-level processing stages such as object detection.

192 citations