scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gold and platinum catalysis—a convenient tool for generating molecular complexity

22 Oct 2009-Chemical Society Reviews (Royal Society of Chemistry, etc.)-Vol. 38, Iss: 11, pp 3208-3221
TL;DR: This critical review intends to familiarize the reader with the essence of pi-acid catalysis, in particular with reactions or reaction cascades effected by gold and platinum complexes.
Abstract: This critical review intends to familiarize the reader with the essence of π-acid catalysis, in particular with reactions or reaction cascades effected by gold and platinum complexes. Even though materialized in apparently different reactivity modes, such noble metal catalyzed processes can be easily rationalized on the basis of a uniform mechanistic scheme that is outlined in detail. The resulting increase in molecular complexity is illustrated by selected natural product total syntheses and the formation of various intricate non-natural compounds (106 references).
Citations
More filters
Journal ArticleDOI
TL;DR: Gold(I) complexes selectively activate π-bonds of alkenes in complex molecular settings, which has been attributed to relativistic effects as discussed by the authors, and are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions.
Abstract: 1.1. General Reactivity of Alkyne-Gold(I) Complexes For centuries, gold had been considered a precious, purely decorative inert metal. It was not until 1986 that Ito and Hayashi described the first application of gold(I) in homogeneous catalysis.1 More than one decade later, the first examples of gold(I) activation of alkynes were reported by Teles2 and Tanaka,3 revealing the potential of gold(I) in organic synthesis. Now, gold(I) complexes are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions, and a broad range of versatile synthetic tools have been developed for the construction of carbon–carbon or carbon–heteroatom bonds. Gold(I) complexes selectively activate π-bonds of alkynes in complex molecular settings,4−10 which has been attributed to relativistic effects.11−13 In general, no other electrophilic late transition metal shows the breadth of synthetic applications of homogeneous gold(I) catalysts, although in occasions less Lewis acidic Pt(II) or Ag(I) complexes can be used as an alternative,9,10,14,15 particularly in the context of the activation of alkenes.16,17 Highly electrophilic Ga(III)18−22 and In(III)23,24 salts can also be used as catalysts, although often higher catalyst loadings are required. In general, the nucleophilic Markovnikov attack to η2-[AuL]+-activated alkynes 1 forms trans-alkenyl-gold complexes 2 as intermediates (Scheme 1).4,5a,9,10,12,25−29 This activation mode also occurs in gold-catalyzed cycloisomerizations of 1,n-enynes and in hydroarylation reactions, in which the alkene or the arene act as the nucleophile. Scheme 1 Anti-Nucleophilic Attack to η2-[AuL]+-Activated Alkynes

1,260 citations

Journal ArticleDOI
TL;DR: Application to Total Synthesis 1699 6.1.
Abstract: A.L.-P. thanks CSIC for a contract under the JAE-doctor program. Financial support by PLE2009 project from MCIINN and Consolider-Ingenio 2010 (proyecto MULTICAT) are also acknowledged.

1,125 citations

Journal ArticleDOI
TL;DR: This account comprises gold-catalyzed cyclization reactions of allenes by attack of carbon or heteroatom nucleophiles, which are particularly well suited for the selective activation of allene in the presence of other reactive functionalities.
Abstract: Allenes are highly valuable synthetic precursors in preparative organic chemistry because of their ability to undergo a variety of transformations. Among many different reaction modes, activation of the cumulated double bonds by treatment with a Brønsted or Lewis acid is particularly useful because it allows a nucleophilic attack, which leads to the formation of a new C-C or Cheteroatom bond in an interor intramolecular fashion. Because of their axial chirality, allenes can undergo this bond formation with chirality transfer, which renders the method attractive for stereoselective target-oriented synthesis. Because of their soft and carbophilic character, gold catalysts are particularly well suited for the selective activation of allenes in the presence of other reactive functionalities. Compared to intermolecular additions, gold-catalyzed cyclization reactions of allenes by intramolecular nucleophilic attack have received much more attention. Here, the gold catalyst can coordinate to either allenic double bond, and the regioselectivity of the subsequent nucleophilic attack depends on the structure of the substrate, in particular the length of the tether connecting allene and nucleophile (Scheme 1). Hence, four different endoor exo-cyclization products can be obtained, but the formation of fiveor sixmembered rings via σ-gold species A or D, i.e., by nucleophilic attack at a terminal allenic carbon atom, is favored in most cases, whereas products arising from nucleophilic attack at the central allenic carbon atom (via intermediates B and C) are rare. Normally, these cyclization products are chiral and can be accessed in a stereoselective manner either from chiral allenes by axis-to-center chirality transfer or from achiral allenes utilizing chiral gold catalysts. This account comprises gold-catalyzed cyclization reactions of allenes by attack of carbon or heteroatom nucleophiles. Intermolecular addition reactions to allenes, as well as gold-catalyzed transformation of nonallenic substrates in which an allene is generated in situ (e.g., by sigmatropic rearrangement) and converted without isolation, will not be covered.

1,002 citations

Journal ArticleDOI
TL;DR: This review highlights the recent progress in the chemical synthesis of bimetallic NCs and the control over morphology, size, composition, and structure of bimodal NCs as well as the exploration of their properties and applications.
Abstract: Bimetallic nanocrystals (NCs) with core/shell, heterostructure, or inter-metallic and alloyed structures are emerging as more important materials than monometallic NCs They are expected to display not only a combination of the properties associated with two distinct metals, but also new properties and capabilities due to a synergy between the two metals More importantly, bimetallic NCs usually show composition-dependent surface structure and atomic segregation behavior, and therefore more interesting applied potentials in various fields including electronics, engineering, and catalysis Compared with monometallic NCs, preparation of bimetallic NCs is much more complicated and difficult to be achieved In recent years, researchers from many groups have made great efforts in this area This review highlights the recent progress in the chemical synthesis of bimetallic NCs The control over morphology, size, composition, and structure of bimetallic NCs as well as the exploration of their properties and applications are discussed

983 citations

References
More filters
Journal ArticleDOI
TL;DR: Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.
Abstract: Although homogeneous gold catalysis was known previously, an exponential growth was only induced 12 years ago. The key findings which induce that rise of the field are discussed. This includes early reactions of allenes and furanynes and intermediates of these conversions as well as hydroarylation reactions. Other substrate types addressed are alkynyl epoxides and N-propargyl carboxamides. Important vinylgold intermediates, the transmetalation from gold to other transition metals, the development of new ligands for gold catalysis, and significant contributions from computational chemistry are other crucial points for the field highlighted here.

2,792 citations

Journal ArticleDOI
TL;DR: The ability of platinum and gold catalysts to effect powerful atom-economic transformations has led to a marked increase in their utilization and the application of platinum- and gold-catalyzed transformations in natural product synthesis is discussed.
Abstract: The ability of platinum and gold catalysts to effect powerful atom-economic transformations has led to a marked increase in their utilization. The quite remarkable correlation of their catalytic behavior with the available structural data, coordination chemistry, and organometallic reactivity patterns, including relativistic effects, allows the underlying principles of catalytic carbophilic activation by π acids to be formulated. The spectrum of reactivity extends beyond their utility as catalytic and benign alternatives to conventional stoichiometric π acids. The resulting reactivity profile allows this entire field of catalysis to be rationalized, and brings together the apparently disparate electrophilic metal carbene and nonclassical carbocation explanations. The advances in coupling, cycloisomerization, and structural reorganization—from the design of new transformations to the improvement to known reactions—are highlighted in this Review. The application of platinum- and gold-catalyzed transformations in natural product synthesis is also discussed.

1,938 citations

Journal ArticleDOI
TL;DR: The ways in which selectivity can be controlled in homogeneous Au catalysis are enumerated, in the hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneity AuCatalysis.
Abstract: 1.1. Context and Meta-Review Despite the ubiquity of metallic gold (Au) in popular culture, its deployment in homogeneous catalysis has only recently undergone widespread investigation. In the past decade, and especially since 2004, great progress has been made in developing efficient and selective Au-catalyzed transformations, as evidenced by the prodigious number of reviews available on various aspects of this growing field. Hashmi has written a series of comprehensive reviews outlining the progression of Au-catalyzed reaction development,1 and a number of more focused reviews provide further insight into particular aspects of Au catalysis. A brief meta-review of the available range of perspectives published on Au catalysis helps to put this Chemical Reviews article in context. The vast majority of reactions developed with homogeneous Au catalysts have exploited the propensity of Au to activate carbon-carbon π-bonds as electrophiles. Gold has come to be regarded as an exceedingly mild, relatively carbophilic Lewis acid, and the broad array of newly developed reactions proceeding by activation of unsaturated carbon-carbon bonds has been expertly reviewed.2 Further reviews and highlights on Au catalysis focus on particular classes of synthetic reactions. An excellent comprehensive review of Au-catalyzed enyne cycloisomerizations is available.3 Even more focused highlights on hydroarylation of alkynes,4 hydroamination of C-C multiple bonds,5 and reactions of oxo-alkynes6 and propargylic esters7 provide valuable perspectives on progress and future directions in the development of homogeneous Au catalysis. Most of the reviews on Au catalysis emphasize broad or specific advances in synthetic utility. Recently, we have invoked relativistic effects to provide a framework for understanding the observed reactivity of Au catalysts, in order to complement empirical advancements.8 In this Chemical Reviews article, we attempt to enumerate the ways in which selectivity can be controlled in homogeneous Au catalysis. It is our hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneous Au catalysis.

1,783 citations

Journal ArticleDOI
TL;DR: The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cycloprostyl palladiumCarbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne.
Abstract: Gold salts and complexes have emerged in the past few years as the most powerful catalysts for electrophilic activation of alkynes toward a variety of nucleophiles under homogeneous conditions. In a simplified form, nucleophilic attack on the [AuL]-activated alkyne proceeds via π complexes 1 to give trans-alkenyl gold complexes of type 2 as intermediates (Scheme 1). This type of coordination is also a common theme in gold-catalyzed cycloisomerizations of enynes, in which the alkene function acts as the nucleophile. In the reaction of enynes with complexes of other transition metals, an Alder-ene cycloisomerization can take place by simultaneous coordination of the alkyne and the alkene to the metal followed by an oxidative cyclometalation. In contrast, this process does not occur for gold(I) since oxidative addition processes are not facile for this metal. 6 In addition, the [AuL] fragment, which is isolobal to H and HgL, adopts a linear coordination and binds to either the alkene or the alkyne. Thus, cycloisomerizations of enynes catalyzed by gold proceed by an initial coordination of the metal to the alkyne, and as illustrated in Scheme 2, the resulting complex 3 reacts with the alkene by either the 5-exo-dig or 6-endo-dig pathway to form the exoor endocyclopropyl gold carbene 4 or 5, respectively, as has been established with other electrophilic transition-metal complexes or halides MXn as catalysts. The proposed involvement of cyclopropyl metal carbenes of type 4 in the electrophilic activation of enynes by transition metals was first substantiated in reactions catalyzed by Pd(II), in which the initially formed cyclopropyl palladium carbenes undergo [4 + 2] cycloaddition with the double bond of the conjugate enyne. Strong evidence for the existence of cyclopropyl metal carbenes as intermediates was also obtained in the reaction of enynes bearing additional double bonds at the alkenyl chain with Ru(II) and Pt(II) catalysts. In these reactions, the cyclopropyl metal carbenes are trapped intramolecularly by the terminal alkene to give tetracycles containing two cyclopropanes. Gold(I) complexes usually surpass the reactivity shown by Pt(II) and other electrophilic metal salts and complexes for the activation of enynes. They are highly reactive yet uniquely selective Lewis acids that have a high affinity for π bonds. This high π-acidity is linked to relativistic effects, which reach a maximum in the periodic table with gold. However, on occasion, the stronger Lewis acidity of gold complexes can be detrimental in terms of selectivity and because of their low tolerance to certain functional groups. In these instances, the less-strongly Lewis acidic Pt(II) complexes could be the catalysts of choice. * To whom correspondence should be addressed. E-mail: aechavarren@ iciq.es. † Additional affiliation: Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Scheme 1 Chem. Rev. 2008, 108, 3326–3350 3326

1,728 citations

Journal ArticleDOI
TL;DR: Thanks to gold-based catalysts, various organic transformations have been accessible under facile conditions with both high yields and chemoselectivity.
Abstract: Thanks to its unusual stability, metallic gold has been used for thousands of years in jewelry, currency, chinaware, and so forth. However, gold had not become the chemists’ “precious metal” until very recently. In the past few years, reports on gold-catalyzed organic transformations have increased substantially. Thanks to gold-based catalysts, various organic transformations have been accessible under facile conditions with both high yields and chemoselectivity.

1,698 citations