scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gold futures returns and realized moments : a forecasting experiment using a quantile-boosting approach

TL;DR: The German Science Foundation (Project Macroeconomic Forecasting in Great Crises; Grant number: FR 2677/4/1) as mentioned in this paper has provided a grant for the project.
About: This article is published in Resources Policy.The article was published on 2018-08-01 and is currently open access. It has received 8 citations till now. The article focuses on the topics: Realized variance & Futures contract.

Summary (3 min read)

1 Introduction

  • The financial market crises and prolonged uncertainty surrounding global economic fundamentals have drawn the attention of researchers towards the dynamics of gold returns as the traditionally accepted safe haven.
  • While studies including Bollerslev et al. (2013) and Corsi et al. (2013) use realized volatility for forecasting stock-market returns and to develop option-valuation models, a number of studies in the asset-pricing literature underline the predictive ability of realized skewness for stock returns.
  • The predictive value of realized moments is particularly evident for intermediate forecast horizons and holds in many cases for lower quantiles, suggesting that realized moments must be taken into account in forecasting exercises that target distressed market periods in particular.

2.1 The Quantile-Boosting Approach

  • Like Fenske et al. (2011), the authors choose the median of the response variable as a starting value.
  • The authors determine the final iteration, m∗, as the one that minimizes the loss function.
  • Because the optimal forecasting model may change over time the authors use a recursively expanding estimation window to implement the quantileboosting approach (see Pierdzioch et al., 2016).

2.2 Forecast Evaluation

  • The authors check the informational value of the boosted forecasts by comparing them with the forecasts from a recursively estimated boosted benchmark model, b.
  • In doing so, the authors account for the fact that the quantile-boosting algorithm adjusts forecasts depending on the shape of the loss function given in Equation (1) (see Pierdzioch et al., 2015, 2016).
  • Similarly, a quantile parameter of α < 0.5 implies that the loss of a negative forecast error exceeds the loss of a positive forecast error, requiring a downward adjustment of forecasts relative to the symmetric benchmark case.
  • If both forecasts contain non-overlapping information for rt+h then both coefficients, γ1,α,h and γ2,α,h, should be significantly different from zero.
  • Because of the overlapping structure of the data in case of multiperiod forecasts, the authors use bootstrap simulations to assess the significance of the coefficients.

3.1 Gold Futures Returns and Realized Moments

  • 1-minute returns are then computed by taking the log-differences of these prices and these intra-day returns are used to compute the realized moments.
  • Based on the Jarque-Bera test statistic (not reported), the authors can reject normality of the sampling distribution of returns at the highest levels of significance, which provides some preliminary justification for modeling the quantiles rather than simply the mean of the conditional distribution of returns.

3.2 Other Predictor Variables

  • In addition to realized volatility and realized skewness, the authors consider several market- and sentiment-based predictors in the construction of the forecasting models.
  • Da et al. (2015) show that the FEARS index has predictive power over short-term stock market reversals as well as temporary increases in volatility.
  • Naturally, their analysis is restricted to this sample period.
  • The role of exchange rate movements for gold returns has been examined in a number of studies including Pukthuanthong and Roll (2011), Reboredo (2013b), and Reboredo and Rivera-Castro (2014).
  • The primary measure for this index equals the number of articles that contain at least one term from each of three sets of terms (economic or economy, uncertain or uncertainty, and legislation, regulation, Congress, Federal Reserve, or White House).

4.1 Structure of the Forecasting Models

  • For computing their baseline results, the authors use 75% of the data (1,222 observations; the initialization period ends in July 2009; as a robustness check, they shall present results for an extended out-of-sample period in Section 4.4) to initialize the quantile-boosting approach, and the remaining data for out-of-sample forecasting.
  • For the longer forecasting horizon (ten-days-ahead), this pattern becomes asymmetric insofar as the lower quantiles require more iterations than the upper quantiles.
  • In line with this pattern, the quantile-boosting approach selects more predictors for the longer forecast horizons.
  • For one-day-ahead returns, realized volatility mainly enters the boosted forecasting models for several upper and the two lower quantiles.
  • The importance of realized skewness increases for the quantiles in the range 0.55 ≤ α ≤ 0.7 and remains strong, and in some cases strengthens even further relative to the results for five-days-ahead returns, for quantiles below α = 0.4.

4.2 Fair-Shiller Regressions

  • For ten-days-ahead returns the dominance of the quantile-boosting approach becomes stronger for the lower quantiles, while results for the quantiles above the median are not significant for the quantile-boosting approach.
  • Table 2 summarizes the results of Fair-Shiller regressions that compare a boosted model that excludes the realized moments from the list of predictors and a boosted AR(1) model.
  • Nevertheless, whatever the underlying economic rationale might be, their findings clearly point to the significant predictive value of realized moments during distressed market periods, even in the presence of other well cited market- and sentimentbased predictors for gold returns.

4.3 Alternative Realized Moments

  • The authors consider two alternative measures of realized moments.
  • For this estimator the authors use 10-minute returns as slow scale and 1-minute returns as fast scale.
  • Please include Tables 4 and 5 about here.

4.4 Extended Forecasting Period

  • Having presented evidence on the predictive ability of realized moments for the selected baseline sample period discussed in Section 4.1, the authors next analyze an extended out-of-sample forecasting period for a robustness check.
  • Specifically, the authors reserve 50% of the data for out-of-sample forecasting (the initialization period ends in November 2007) such that the out-of-sample forecasting period comprises the onset of the financial crisis of 2008/2009.
  • The coefficient is significant also for a few of the other quantiles during some periods of time.
  • When the authors exclude the realized moments from the list of predictor variables, they still obtain forecasts that yield a significant coefficient for the two upper quantiles at the beginning of the out-of-sample period, but the significance of the coefficient becomes fragile and more scattered across the quantiles as they move the rolling window forward in time.
  • In particular, the authors do not observe a systematically significant coefficient for the lower quantiles in the second half of the out-of-sample period, which is in stark contrast to the results for a boosted model that inlcudes the realized moments in the list of potential predictors.

5 Concluding Remarks

  • The authors find that realized moments often significantly improve the predictive value of the estimated forecasting models, even after controlling for widely-studied market-based variables including the nominal interest rate, term spread, exchange rates, oil and stock market returns as well as popular uncertainty and sentiment indicators.
  • By the same token, the findings may also serve as a guideline in regime-based asset-allocation strategies in which gold is utilized as a hedge (or safe haven) in order to protect portfolio value during distressed market conditions.

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: The use of ensembles is recommended to forecast agricultural commodities prices one month ahead, since a more assertive performance is observed, which allows to increase the accuracy of the constructed model and reduce decision-making risk.

244 citations

Journal ArticleDOI
TL;DR: The results indicated that the prediction performance of EEMD combined model is better than that of individual models, especially for the 3‐days forecasting horizon, and the machine learning methods outperform the statistical methods to forecast high‐frequency volatile components.
Abstract: Improving the prediction accuracy of agricultural product futures prices is important for the investors, agricultural producers and policy makers. This is to evade the risks and enable the government departments to formulate appropriate agricultural regulations and policies. This study employs Ensemble Empirical Mode Decomposition (EEMD) technique to decompose six different categories of agricultural futures prices. Subsequently three models, Support Vector Machine (SVM), Neural Network (NN) and ARIMA models are used to predict the decomposition components. The final hybrid model is then constructed by comparing the prediction performance of the decomposition components. The predicting performance of the combination model were then compared with the benchmark individual models, SVM, NN, and ARIMA. Our main interest in this study is on the short‐term forecasting, and thus we only consider 1‐day and 3‐days forecast horizons. The results indicated that the prediction performance of EEMD combined model is better than that of individual models, especially for the 3‐days forecasting horizon. The study also concluded that the machine learning methods outperform the statistical methods to forecast high‐frequency volatile components. However, there is no obvious difference between individual models in predicting the low‐frequency components.

37 citations

Journal ArticleDOI
TL;DR: In this article, the in-and out-of-sample predictive value of time-varying risk aversion for realized volatility of gold returns via extended heterogeneous autoregressive realized volatility (HAR-RV) models is studied.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the capacity of Gold to be a hedge or a safe-haven against the depreciation value of USD, EUR, and JPY on average and during extreme movement using the copula theory.

21 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined the inflation-hedging property of gold and silver from a novel perspective by analyzing the impact of a negative shock to the negative component of Southern Oscillation Index (SOI) anomalies.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: A general gradient descent boosting paradigm is developed for additive expansions based on any fitting criterion, and specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification.
Abstract: Function estimation/approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest-descent minimization. A general gradient descent “boosting” paradigm is developed for additive expansions based on any fitting criterion.Specific algorithms are presented for least-squares, least absolute deviation, and Huber-M loss functions for regression, and multiclass logistic likelihood for classification. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such “TreeBoost” models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classification, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire and Friedman, Hastie and Tibshirani are discussed.

17,764 citations

Journal ArticleDOI
TL;DR: pROC as mentioned in this paper is a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface.
Abstract: Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface. With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC. pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.

8,052 citations

Journal ArticleDOI
TL;DR: The authors developed a new index of economic policy uncertainty based on newspaper coverage frequency and found that policy uncertainty spikes near tight presidential elections, Gulf Wars I and II, the 9/11 attacks, the failure of Lehman Brothers, the 2011 debt ceiling dispute and other major battles over fiscal policy.
Abstract: We develop a new index of economic policy uncertainty (EPU) based on newspaper coverage frequency Several types of evidence – including human readings of 12,000 newspaper articles – indicate that our index proxies for movements in policy-related economic uncertainty Our US index spikes near tight presidential elections, Gulf Wars I and II, the 9/11 attacks, the failure of Lehman Brothers, the 2011 debt-ceiling dispute and other major battles over fiscal policy Using firm-level data, we find that policy uncertainty raises stock price volatility and reduces investment and employment in policy-sensitive sectors like defense, healthcare, and infrastructure construction At the macro level, policy uncertainty innovations foreshadow declines in investment, output, and employment in the United States and, in a panel VAR setting, for 12 major economies Extending our US index back to 1900, EPU rose dramatically in the 1930s (from late 1931) and has drifted upwards since the 1960s

4,484 citations

Journal ArticleDOI
TL;DR: In this article, a voluminous literature has emerged for modeling the temporal dependencies in financial market volatility using ARCH and stochastic volatility models and it has been shown that volatility models produce strikingly accurate inter-daily forecasts for the latent volatility factor that would be of interest in most financial applications.
Abstract: A voluminous literature has emerged for modeling the temporal dependencies in financial market volatility using ARCH and stochastic volatility models. While most of these studies have documented highly significant in-sample parameter estimates and pronounced intertemporal volatility persistence, traditional ex-post forecast evaluation criteria suggest that the models provide seemingly poor volatility forecasts. Contrary to this contention, we show that volatility models produce strikingly accurate interdaily forecasts for the latent volatility factor that would be of interest in most financial applications. New methods for improved ex-post interdaily volatility measurements based on high-frequency intradaily data are also discussed.

3,174 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a test of independence that can be applied to the estimated residuals of any time series model, which can be transformed into a model driven by independent and identically distributed errors.
Abstract: This paper presents a test of independence that can be applied to the estimated residuals of any time series model that can be transformed into a model driven by independent and identically distributed errors. The first order asymptotic distribution of the test statistic is independent of estimation error provided that the parameters of the model under test can be estimated -consistently. Because of this, our method can be used as a model selection tool and as a specification test. Widely used software1 written by Dechert and LeBaron can be used to implement the test. Also, this software is fast enough that the null distribution of our test statistic can be estimated with bootstrap methods. Our method can be viewed as a nonlinear analog of the Box-Pierce Q statistic used in ARIMA analysis.

2,723 citations

Frequently Asked Questions (2)
Q1. What have the authors contributed in "Gold futures returns and realized moments: a forecasting experiment using a quantile-boosting approach" ?

This paper proposes an iterative model-building approach known as quantile boosting to trace out the predictive value of realized volatility and skewness for gold futures returns. Controlling for several widely studied marketand sentiment-based variables, the authors examine the predictive value of realized moments across alternative forecast horizons and across the quantiles of the conditional distribution of gold futures returns. The authors find that the realized moments often significantly improve the predictive value of the estimated forecasting models at intermediate forecast horizons and across quantiles representing distressed market conditions. 

Furthermore, as Shrestha ( 2014 ) notes, one can expect price discovery to take place primarily in the futures market as the futures price responds to new information faster than the spot price due to lower transaction costs and ease of short selling associated with the futures contracts. The futures price data, in continuous format, are obtained from www. Based on the Jarque-Bera test statistic ( not reported ), the authors can reject normality of the sampling distribution of returns at the highest levels of significance, which provides some preliminary justification for modeling the quantiles rather than simply the mean of the conditional distribution of returns. By the same token, an analysis by means of the BDS test ( Brock et al., 1996 ; results are available upon request ) indicates, for various embedding dimensions, the presence of nonlinearity in the returns series, further strengthening the case for a quantiles-based modeling approach.