scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Gold nanorod-based localized surface plasmon resonance biosensors: A review

01 May 2014-Sensors and Actuators B-chemical (Elsevier)-Vol. 195, pp 332-351
TL;DR: A detailed review of the key underpinning science for such systems and of recent progress in the development of a number of LSPR-based biosensors which use gold nanorods as the active element is provided in this paper.
Abstract: Noble metal nanoparticle-based localized surface plasmon resonance (LSPR) is an advanced and powerful label-free biosensing technique which is well-known for its high sensitivity to the surrounding refractive index change in the local environment caused by the biomolecular interactions around the sensing area. The characteristics of the LSPR effect in such sensors are highly dependent on the size, shape and nature of the material properties of the metallic nanoparticles considered. Among the various types of metallic nanoparticles used in studies employing the LSPR technique, the use of gold nanorods (GNRs) has attracted particular attention for the development of sensitive LSPR biosensors, this arising from the unique and intriguing optical properties of the material. This paper provides a detailed review of the key underpinning science for such systems and of recent progress in the development of a number of LSPR-based biosensors which use GNR as the active element, including an overview of the sensing principle, the synthesis of GNRs, the fabrication of a number of biosensors, techniques for surface modification of GNRs and finally their performance in several biosensing applications. The review ends with a consideration of key advances in GNR-based LSPR sensing and prospects for future research and advances for the development of the GNR-based LSPR biosensors.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jul 2018-Talanta
TL;DR: This article reviewed the popular AuNPs synthesis methods and mentioned their established applications in various demands, especially in biological sensing.

772 citations

Journal ArticleDOI
TL;DR: With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future.

489 citations

Journal ArticleDOI
05 Feb 2021-Sensors
TL;DR: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal as mentioned in this paper, which can transform biological signals into electrochemical, electrical, optical, gravimetric, or acoustic signals.
Abstract: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance ie, increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability) Furthermore, these nanomaterials can themselves act as transduction elements This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (eg, noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology

401 citations

Journal ArticleDOI
TL;DR: PA contrast agents are classified according to their components and function, and gold nanocrystals, gold‐nanocrystal assembly, transition‐metal chalcogenides/MXene‐based nanomaterials, carbon‐ based nanommaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA‐imaging contrastagents are discussed.
Abstract: Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.

384 citations

Journal ArticleDOI
TL;DR: In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes.

354 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: In this paper, a preliminary survey with the electron microscope of various preparations of colloidal gold, a study was made of the process of nucleation and growth in gold colloids, and it was shown that nucleating agents may be identified with reducing agents which form a mixed polymer with chlorauric ion before the reduction to the nucleus takes place.
Abstract: After a preliminary survey with the electron microscope of various preparations of colloidal gold, a study was made of the process of nucleation and growth in gold colloids. It was shown that nucleating agents may be identified with reducing agents which form a mixed polymer with chlorauric ion before the reduction to the nucleus takes place. It was also shown that the law of growth is exponential. The average size, the deviation from the average size and the character of the particle size distribution curve are determined by the amount of gold, the nucleation process and the law of growth.

6,593 citations

Journal ArticleDOI
TL;DR: This paper introduces the localized surface plasmon resonance (LSPR) sensor and describes how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation.
Abstract: Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

6,352 citations

Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: Main application areas are outlined and examples of applications of SPR sensor technology are presented and future prospects of SPR technology are discussed.
Abstract: Since the first application of the surface plasmon resonance (SPR) phenomenon for sensing almost two decades ago, this method has made great strides both in terms of instrumentation development and applications. SPR sensor technology has been commercialized and SPR biosensors have become a central tool for characterizing and quantifying biomolecular interactions. This paper attempts to review the major developments in SPR technology. Main application areas are outlined and examples of applications of SPR sensor technology are presented. Future prospects of SPR sensor technology are discussed.

5,127 citations