scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GPS constraints on Africa (Nubia) and Arabia plate motions

01 Oct 2003-Geophysical Journal International (Oxford University Press)-Vol. 155, Iss: 1, pp 126-138
TL;DR: In this article, the authors used continuously recording GPS and survey-mode GPS (SGPS) observations to determine Euler vectors for relative motion of the African (Nubian), Arabian and Eurasian plates.
Abstract: SUMMARY We use continuously recording GPS (CGPS) and survey-mode GPS (SGPS) observations to determine Euler vectors for relative motion of the African (Nubian), Arabian and Eurasian plates. We present a well-constrained Eurasia‐Nubia Euler vector derived from 23 IGS sites in Europe and four CGPS and three SGPS sites on the Nubian Plate (−0.95 ± 4.8 ◦ N, −21.8 ± 4.3 ◦ E, 0.06 ± 0.005 ◦ Myr −1 ). We see no significant (> 1m m yr −1 ) internal deformation of the Nubian Plate. The GPS Nubian‐Eurasian Euler vector differs significantly from NUVEL-1A (21.0 ± 4.2 ◦ N, −20.6 ± 0.6 ◦ E, 0.12 ± 0.015 ◦ Myr −1 ), implying more westward motion of Africa relative to Eurasia and slower convergence in the eastern Mediterranean. The Arabia‐ Eurasia and Arabia‐Nubia GPS Euler vectors are less well determined, based on only one CGPS and three SGPS sites on the Arabian Plate. The preliminary Arabia‐Eurasia and Arabia‐ Nubia Euler vectors are 27.4 ± 1.0 ◦ N, 18.4 ± 2.5 ◦ E, 0.40 ± 0.04 ◦ Myr −1 , and 30.5 ± 1.0 ◦ N, 25.7 ± 2.3 ◦ E, 0.37 ± 0.04 ◦ Myr −1 , respectively. The GPS Arabia‐Nubia Euler vector differs significantly from NUVEL-1A (24.1 ± 1.7 ◦ N, 24.0 ± 3.5 ◦ E, 0.40 ± 0.05 ◦ Myr −1 ), but is statistically consistent at the 95 per cent confidence level with the revised Euler vector reported by Chu & Gordon based on a re-evaluation of magnetic anomalies in the Red Sea (31.5 ± 1.2 ◦ N, 23.0 ± 2.7 ◦ E, 0.40 ± 0.05 ◦ Myr −1 ). The motion implied in the Gulf of Aqaba and on the Dead Sea fault (DSF) by the new GPS Nubia‐Arabia Euler vector (i.e. ignoring possible Sinai block motion and possible internal plate deformation) grades from pure left lateral strike-slip in the Gulf and on the southern DSF with increasing compression on the central and northern DSF with relative motion increasing from 5.6 to 7.5 mm yr −1 (± 1m m yr −1 ) from south to north. Along the northern DSF (i.e. north of the Lebanon restraining bend) motion is partitioned between 6 ± 1m m yr −1 left-lateral motion parallel to the fault trace and 4 ± 1m m yr −1 faultnormal compression. Relative motions on other plate boundaries (including the Anatolian and Aegean microplates) derived from the GPS Euler vectors agree qualitatively with the sense of motion indicated by focal mechanisms for large crustal earthquakes (M > 6). Where data are available on fault-slip rates on plate bounding faults (North Anatolian fault, East Anatolian fault, Dead Sea fault, Red Sea rift), they are generally lower than, but not significantly different from, the full plate motion estimates suggesting that the majority of relative plate motion is accommodated on these structures.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an elastic block model was developed to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults.
Abstract: [1] The GPS-derived velocity field (1988–2005) for the zone of interaction of the Arabian, African (Nubian, Somalian), and Eurasian plates indicates counterclockwise rotation of a broad area of the Earth's surface including the Arabian plate, adjacent parts of the Zagros and central Iran, Turkey, and the Aegean/Peloponnesus relative to Eurasia at rates in the range of 20–30 mm/yr. This relatively rapid motion occurs within the framework of the slow-moving (∼5 mm/yr relative motions) Eurasian, Nubian, and Somalian plates. The circulatory pattern of motion increases in rate toward the Hellenic trench system. We develop an elastic block model to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults. Substantial areas of continental lithosphere within the region of plate interaction show coherent motion with internal deformations below ∼1–2 mm/yr, including central and eastern Anatolia (Turkey), the southwestern Aegean/Peloponnesus, the Lesser Caucasus, and Central Iran. Geodetic slip rates for major block-bounding structures are mostly comparable to geologic rates estimated for the most recent geological period (∼3–5 Myr). We find that the convergence of Arabia with Eurasia is accommodated in large part by lateral transport within the interior part of the collision zone and lithospheric shortening along the Caucasus and Zagros mountain belts around the periphery of the collision zone. In addition, we find that the principal boundary between the westerly moving Anatolian plate and Arabia (East Anatolian fault) is presently characterized by pure left-lateral strike slip with no fault-normal convergence. This implies that “extrusion” is not presently inducing westward motion of Anatolia. On the basis of the observed kinematics, we hypothesize that deformation in the Africa-Arabia-Eurasia collision zone is driven in large part by rollback of the subducting African lithosphere beneath the Hellenic and Cyprus trenches aided by slab pull on the southeastern side of the subducting Arabian plate along the Makran subduction zone. We further suggest that the separation of Arabia from Africa is a response to plate motions induced by active subduction.

1,609 citations

Journal ArticleDOI
TL;DR: A network of 27 GPS sites was implemented in Iran and northern Oman to measure displacements in this part of the Alpine-Himalayan mountain belt as mentioned in this paper, and the results of two surveys performed in 1999 September and 2001 October.
Abstract: SUMMARY A network of 27 GPS sites was implemented in Iran and northern Oman to measure displacements in this part of the Alpine‐Himalayan mountain belt. We present and interpret the results of two surveys performed in 1999 September and 2001 October. GPS sites in Oman show northward motion of the Arabian Plate relative to Eurasia slower than the NUVEL-1A estimates (e.g. 22 ± 2m m yr −1 at N8 ◦ ± 5 ◦ E instead of 30.5 mm yr −1 at N6 ◦ E at Bahrain longitude). We define a GPS Arabia‐Eurasia Euler vector of 27.9 ◦ ± 0.5 ◦ N, 19.5 ◦ ± 1.4 ◦ E, 0.41 ◦ ± 0.1 ◦ Myr −1 . The Arabia‐Eurasia convergence is accommodated differently in eastern and western Iran. East of 58 ◦ E, most of the shortening is accommodated by the Makran subduction zone (19.5 ± 2m m yr −1 ) and less by the Kopet-Dag (6.5 ± 2m m yr −1 ). West of 58 ◦ E, the deformation is distributed in separate fold and thrust belts. At the longitude of Tehran, the Zagros and the Alborz mountain ranges accommodate 6.5 ± 2m m yr −1 and 8 ± 2m m yr −1 respectively. The right-lateral displacement along the Main Recent Fault in the northern Zagros is about 3 ± 2m m yr −1 , smaller than what was generally expected. By contrast, large rightlateral displacement takes place in northwestern Iran (up to 8 ± mm yr −1 ). The Central Iranian Block is characterized by coherent plate motion (internal deformation < 2m m yr −1 ). Sites east of 61 ◦ E show very low displacements relative to Eurasia. The kinematic contrast between eastern and western Iran is accommodated by strike-slip motions along the Lut Block. To the south, the transition zone between Zagros and Makran is under transpression with right-lateral displacements of 11 ± 2m m yr −1 .

1,013 citations


Cites background or methods or result from "GPS constraints on Africa (Nubia) a..."

  • ...7) and the results of the McClusky et al. (2003) study (sites KIZ2, KRCD and GAZI, Fig....

    [...]

  • ...…systems and earthquake slip vectors, the Arabian Plate is moving N13◦E at a rate of about 31 mm yr−1 relative to Eurasia at the longitude of 52◦E. Geodetic data (e.g. Sella et al. 2002; Kreemer et al. 2003; McClusky et al. 2003) suggest roughly the same orientation but with rates ∼10 mm yr−1 lower....

    [...]

  • ...The different solutions of the Arabia–Eurasia Euler vector (i.e. adding or not the sites of McClusky et al. 2003, and removing some of our sites) were slightly similar....

    [...]

  • ...Geodetic data (e.g. Sella et al. 2002; Kreemer et al. 2003; McClusky et al. 2003) suggest roughly the same orientation but with rates ∼10 mm yr−1 lower....

    [...]

  • ...…and comments Ar–Eu 27.9 ± 0.5 19.5 ± 1.4 0.41 ± 0.1 This study Ar–Eu 25.6 ± 2.1 19.7 ± 4.1 0.50 ± 0.1 McClusky et al. (2000) Ar–Eu 27.4 ± 1.0 18.4 ± 2.5 0.40 ± 0.04 McClusky et al. (2003) Ar–Eu 26.29 ± 2.1 22.82 ± 1.1 0.427 ± 0.029 Sella et al. (2002) Ar–Eu 23.0 7.9 0.26 Kreemer et al.…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the evolution of the greater Red Sea-Gulf of Aden rift system, which includes the Gulfs of Suez and Aqaba, the Red Sea and Gulf of Aden marine basins and their continental margins, and the Afar region.

774 citations


Cites background from "GPS constraints on Africa (Nubia) a..."

  • ...5 E), global circuit closure (Chu and Gordon, 1998) and GPS measurements (McClusky et al., 2003) indicate that the present-day motion of Arabia with respect to Africa (Nubia) is 1....

    [...]

  • ...This corresponded in time to an important unconformity throughout the Red Sea basin and along the margins of the Gulf of Aden, coeval with the Messinian unconformity of the Mediterranean basin....

    [...]

  • ...North of Suez in Egypt the rift system became emergent, perhaps due to minor compression of the Sinai sub-plate, and the marine connection to the Mediterranean Sea became restricted but not terminated....

    [...]

  • ...GPS measurements record relative motion in approximately the same directions, but with only about 70% of the velocity (McClusky et al., 2003)....

    [...]

  • ...GPS measurements give a much more complicated picture for the eastern Mediterranean (McClusky et al., 2003), largely due to deformation around the Anatolian plate that NUVEL-1 does not resolve....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors considered the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift, and the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features, and volcanism in its relationships with the tectonics.

659 citations


Cites background from "GPS constraints on Africa (Nubia) a..."

  • ...Finally in terms of plate tectonics, block movements in East Africa are divergent, and tension might be considered the major factor (McClusky et al., 2003)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors used earthquake and Global Positioning System (GPS) data to study the present-day kinematics and tectonics of the Africa-Eurasia plate boundary in this region.
Abstract: SUMMARY The Western Mediterranean displays a complex pattern of crustal deformation distributed along tectonically active belts developed in the framework of slow oblique plate convergence. We used earthquake and Global Positioning System (GPS) data to study the present-day kinematics and tectonics of the Africa-Eurasia plate boundary in this region. Crustal seismicity and focal mechanisms, analysed in terms of seismic moment release and seismic deformation, outline the geometry of major seismic belts and characterize their tectonics and kinematics. Continuous GPS data have been analysed to determine Euler vectors for the Nubian and Eurasian plates and to provide the global frame for a new Mediterranean GPS velocity field, obtained by merging continuous and campaign observations collected in the 1991‐2005 time span. GPS velocities and displacements predicted by the Nubia-Eurasia rotation pole provide estimates of the deformation accommodated across the tectonically active belts. The rather simple deformation occurring in the Atlantic region, characterized by extension about perpendicular to the Middle Atlantic and Terceira ridges and right-lateral motion along the Gloria transform fault, turns into a complex pattern of deformation, occurring along broader seismic belts, where continental lithosphere is involved. Our analysis reveals a more complex fragmentation of the plate boundary than previously proposed. The roughly E-W trending mainly compressive segments (i.e. southwestern Iberia, northern Algeria and southern Tyrrhenian), where plate convergence is largely accomodated across rather localized deformation zones, and partially transferred northward to the adjacent domains (i.e. the Algero-Balearic and Tyrrhenian basins), are interrupted by regions of more distributed deformation (i.e. the Rif-Alboran-Betics, Tunisia-Libya and eastern Sicily) or limited seismicity (i.e. the Strait of Sicily), which are characterized by less homogeneous tectonics regimes (mainly transcurrent to extensional). In correspondence of the observed breaks, tectonic structures with different orientation interfere, and we find belts with only limited deformation (i.e. the High and Middle Atlas, the Tunisian Atlas and the offshore Tunisia-Libya belt) that extends from the plate boundary into the Nubian plate, along pre-existing tectonic lineaments. Our analysis suggest that the Sicilian-Pelagian domain is moving independently from Nubia, according to the presence of a right-lateral and extensional decoupling zone corresponding to the Tunisia-Libya and Strait of Sicily deformation zone. Despite the space variability of active tectonic regimes, plate convergence still governs most of the seismotectonic and kinematic setting up to the central Aeolian region. In general, local complexities derive from pre-existing structural features, inherited from the tectonic evolution of the Mediterranean region. On the contrary, along Calabria and the Apennines the contribution of the subducted Ionian oceanic lithosphere and the occurrence of microplates (i.e. Adria) appear to substantially modify both tectonics and kinematics. Finally, GPS data across the Gibraltar Arc and the Tyrrhenian-Calabria domain support the hypothesis that slab rollback in these regions is mostly slowed down or stopped.

519 citations


Cites background or result from "GPS constraints on Africa (Nubia) a..."

  • ...Here convergence, according to neotectonic data (Morel & Meghraoui, 1996), appears partitioned into a N30◦W compression and a strike-slip (right-lateral) deformation....

    [...]

  • ...These observations are in agreement with neotectonic data from Morel & Meghraoui (1996) who interpreted this segment of the plate boundary as a transpressive deformation zone, where active thrust faults are controlled by right-lateral transcurrent faults....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used as discussed by the authors.
Abstract: A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used Tectonic implications of the patterns that emerged from the results are discussed It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; eg, between the Indian and Australian plates and between the North American and South American plates Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates

3,409 citations

Journal ArticleDOI
TL;DR: In this article, the optimal recalibration of NUVEL-1 is proposed to multiply the angular velocities by a constant, α, of 0.9562, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading.
Abstract: Recent revisions to the geomagnetic time scale indicate that global plate motion model NUVEL-1 should be modified for comparison with other rates of motion including those estimated from space geodetic measurements. The optimal recalibration, which is a compromise among slightly different calibrations appropriate for slow, medium, and fast rates of seafloor spreading, is to multiply NUVEL-1 angular velocities by a constant, α, of 0.9562. We refer to this simply recalibrated plate motion model as NUVEL-1A, and give correspondingly revised tables of angular velocities and uncertainties. Published work indicates that space geodetic rates are slower on average than those calculated from NUVEL-1 by 6±1%. This average discrepancy is reduced to less than 2% when space geodetic rates are instead compared with NUVEL-1A.

3,359 citations


"GPS constraints on Africa (Nubia) a..." refers background or methods in this paper

  • ...…geologically determined plate motions in the Mediterranean region (i.e. 3 Myr) are described by Euler vectors derived from analyses of sea-floor magnetic anomalies, transform fault orientations and global circuit closure (e.g. DeMets et al. 1990, 1994; Jestin et al. 1994; Chu & Gordon 1998)....

    [...]

  • ...However, DeMets et al. (1990, 1994) acknowledge the shortcomings of their model, which assumes a single African Plate (i.e. no allowance is made for separate Nubian and Somalian plates)....

    [...]

01 Jan 1988
TL;DR: In this paper, a new global model (NUVEL-1) was proposed to describe the geologically current motion between 12 assumed-rigid plates by inverting plate motion data.
Abstract: SUMMARY We determine best-fitting Euler vectors, closure-fitting Euler vectors, and a new global model (NUVEL-1) describing the geologically current motion between 12 assumed-rigid plates by inverting plate motion data we have compiled, critically analysed, and tested for self-consistency. We treat Arabia, India and Australia, and North America and South America as distinct plates, but combine Nubia and Somalia into a single African plate because motion between them could not be reliably resolved. The 1122 data from 22 plate boundaries inverted to obtain NUVEL-1 consist of 277 spreading rates, 121 transform fault azimuths, and 724 earthquake slip vectors. We determined all rates over a uniform time interval of 3.0m.y., corresponding to the centre of the anomaly 2A sequence, by comparing synthetic magnetic anomalies with observed profiles. The model fits the data well. Unlike prior global plate motion models, which systematically misfit some spreading rates in the Indian Ocean by 8–12mm yr−1, the systematic misfits by NUVEL-1 nowhere exceed ∼3 mm yr−1. The model differs significantly from prior global plate motion models. For the 30 pairs of plates sharing a common boundary, 29 of 30 P071, and 25 of 30 RM2 Euler vectors lie outside the 99 per cent confidence limits of NUVEL-1. Differences are large in the Indian Ocean where NUVEL-1 plate motion data and plate geometry differ from those used in prior studies and in the Pacific Ocean where NUVEL-1 rates are systematically 5–20 mm yr−1 slower than those of prior models. The strikes of transform faults mapped with GLORIA and Seabeam along the Mid-Atlantic Ridge greatly improve the accuracy of estimates of the direction of plate motion. These data give Euler vectors differing significantly from those of prior studies, show that motion about the Azores triple junction is consistent with plate circuit closure, and better resolve motion between North America and South America. Motion of the Caribbean plate relative to North or South America is about 7 mm yr−1 slower than in prior global models. Trench slip vectors tend to be systematically misfit wherever convergence is oblique, and best-fitting poles determined only from trench slip vectors differ significantly from their corresponding closure-fitting Euler vectors. The direction of slip in trench earthquakes tends to be between the direction of plate motion and the normal to the trench strike. Part of this bias may be due to the neglect of lateral heterogeneities of seismic velocities caused by cold subducting slabs, but the larger part is likely caused by independent motion of fore-arc crust and lithosphere relative to the overriding plate.

3,328 citations


"GPS constraints on Africa (Nubia) a..." refers background or methods in this paper

  • ...…geologically determined plate motions in the Mediterranean region (i.e. 3 Myr) are described by Euler vectors derived from analyses of sea-floor magnetic anomalies, transform fault orientations and global circuit closure (e.g. DeMets et al. 1990, 1994; Jestin et al. 1994; Chu & Gordon 1998)....

    [...]

  • ...However, DeMets et al. (1990, 1994) acknowledge the shortcomings of their model, which assumes a single African Plate (i.e. no allowance is made for separate Nubian and Somalian plates)....

    [...]

Journal ArticleDOI
TL;DR: GMT is a public domain collection of UNIX tools that contains programs to manipulate (x,y,z) data and to generate PostScript illustrations, including simple x-y diagrams, contour maps, color images, and artificially illuminated, perspective, shaded-relief plots using a variety of map projections.
Abstract: An updated, new version (3.0) of the Generic Mapping Tools (GMT) has just been released. GMT is a public domain collection of UNIX tools that contains programs to manipulate (x,y) and (x,y,z) data and to generate PostScript illustrations, including simple x-y diagrams, contour maps, color images, and artificially illuminated, perspective, shaded-relief plots using a variety of map projections [Wessel and Smith, 1991]. GMT has been installed on super computers, workstations and personal computers, all running some flavor of UNIX. We estimate that approximately 5000 scientists worldwide are currently using GMT in their work.

2,448 citations


"GPS constraints on Africa (Nubia) a..." refers methods in this paper

  • ...The maps in this paper were produced using the public domain Generic Mapping Tools (GMT) software (Wessel & Smith 1995)....

    [...]

01 Jan 1972
TL;DR: In this article, the authors examined more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran and found that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran.
Abstract: Summary Examination of more than 100 fault plane solutions for earthquakes within the Alpide belt between the Mid-Atlantic ridge and Eastern Iran shows that the deformation at present occurring is the result of small continental plates moving away from Eastern Turkey and Western Iran. This pattern of movement avoids thickening the continental crust over much of Turkey by consuming the Eastern Mediterranean sea floor instead. The rates of relative motion of two of the small plates involved, the Aegean and the Turkish plates, are estimated, but are only within perhaps 50 per cent of the true values. These estimates are then used to reconstruct the geometry of the Mediterranean 10 million years ago. The principal difference from the present geometry is the smooth curved coast which then formed the southern coast of Yugoslavia, Greece and Turkey. This coast has since been distorted by the motion of the two small plates. Similar complications have probably been common in older mountain belts, and therefore local geological features may not have been formed by the motion between major plates. A curious feature of several of the large shocks for which fault plane solutions could be obtained for the main shock and one major aftershock was that the two often had different mechanisms.

2,378 citations


"GPS constraints on Africa (Nubia) a..." refers background or methods in this paper

  • ...However, along the Cyprus trench and Florence rise, the Nubian Plate interacts with the Anatolian Plate and along the Hellenic trench with the Aegean Plate (McKenzie 1972; McClusky et al. 2000)....

    [...]

  • ...…for smaller plates and blocks in the interplate deformation zone from seismic and neotectonic observations, analysis of satellite images (e.g. McKenzie 1972; Le Pichon & Angelier 1979; Jackson & McKenzie 1988) and from an analysis of geodetic data (e.g. Le Pichon et al. 1995; Robins et al.…...

    [...]

  • ...The Aegean Plate is moving rapidly towards the SW relative to surrounding plates (30 ± 1 mm yr−1 relative to Eurasia), giving rise to extension in western Turkey (10–15 ± 1 mm yr−1), and in the Gulf of Corinth/central Greece (∼30 ± 1 mm yr−1), although how ‘extension’ is accommodated in central Greece remains enigmatic (Goldsworthy et al. 2002)....

    [...]

Related Papers (5)