scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GPS evidence for northward motion of the Sinai Block: Implications for E. Mediterranean tectonics

30 Sep 2005-Earth and Planetary Science Letters (Elsevier)-Vol. 238, Iss: 238, pp 217-224
TL;DR: In this article, an elastic block model constrained by the GPS results that is consistent with the regional tectonics and allows us to estimate slip rates for Sinai bounding faults, including the Gulf of Aqaba-southern Dead Sea fault system, is presented.
About: This article is published in Earth and Planetary Science Letters.The article was published on 2005-09-30 and is currently open access. It has received 119 citations till now. The article focuses on the topics: Strike-slip tectonics.

Summary (1 min read)

1. Introduction

  • The Sinai Peninsula (Fig. 1 ) lies at the northern end of the Red Sea.
  • The tectonic history of the Sinai region is intimately tied to the separation of the Arabian plate from Africa along the Red Sea rift system.
  • The Red Sea rift basin was well established by early Miocene at which time rifting was concentrated along the Red Sea and its northern extension along the Gulf of Suez [7] .
  • Estimates of current fault slip rates in the Gulf of Aqaba and along the DSF vary considerably (e.g., see [12] for references).
  • The authors use these velocities, and the velocities of IGS-GPS stations in Israel [12] to constrain an elastic block model to test the consistency of the GPS velocities with coherent block motion and to estimate slip rates on blockbounding faults.

2. GPS velocity field

  • Fig. 2 shows GPS-derived velocities in the Sinai network along with velocities from continuously recording stations in surrounding areas relative to Nubia.
  • Table 1 lists the velocity estimates and standard deviations.
  • With the exception of sites CATH and KENS that were measured 4 times between 1997 and 2000 (sites destroyed), velocities for Sinai survey sites were determined from 5 to 7 surveys conducted between 1996 and 2003.
  • In the second step the authors use the loosely constrained estimates of station coordinates, orbits, and EOP and their covariances from each day, aggregated by survey, as quasiobservations in a Kalman filter to estimate a consistent set of coordinates and velocities.
  • Before estimating velocities in the second step of their analysis, the authors examine the time series of position esti- mates to determine the appropriate weights to be applied to each group's surveys.

4. Conclusions

  • Survey-mode GPS observations in and around the Sinai Peninsula, in combination with continuous GPS observations in Israel, provide evidence for coherent, northerly motion of the Sinai Block.
  • On average, the survey data indicate northward motion of 1.4 F 0.8 mm/yr.
  • The authors use a simple elastic block model to characterize block motion and associated slip rates on block-bounding faults.
  • These models suggest a 13 km locking depth for the DSF with left-lateral slip ranging from 4.4 F 0.3 to 4.7 F 0.4 mm/yr from the southern DSF to the DSF in western Syria.
  • The authors are grateful to Muawia Barazangi, Francisco Gomez, Mustapha Meghraoui, and Shimon Wdowinski for helpful reviews that improved the paper.

Did you find this useful? Give us your feedback

Figures (5)
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an elastic block model was developed to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults.
Abstract: [1] The GPS-derived velocity field (1988–2005) for the zone of interaction of the Arabian, African (Nubian, Somalian), and Eurasian plates indicates counterclockwise rotation of a broad area of the Earth's surface including the Arabian plate, adjacent parts of the Zagros and central Iran, Turkey, and the Aegean/Peloponnesus relative to Eurasia at rates in the range of 20–30 mm/yr. This relatively rapid motion occurs within the framework of the slow-moving (∼5 mm/yr relative motions) Eurasian, Nubian, and Somalian plates. The circulatory pattern of motion increases in rate toward the Hellenic trench system. We develop an elastic block model to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults. Substantial areas of continental lithosphere within the region of plate interaction show coherent motion with internal deformations below ∼1–2 mm/yr, including central and eastern Anatolia (Turkey), the southwestern Aegean/Peloponnesus, the Lesser Caucasus, and Central Iran. Geodetic slip rates for major block-bounding structures are mostly comparable to geologic rates estimated for the most recent geological period (∼3–5 Myr). We find that the convergence of Arabia with Eurasia is accommodated in large part by lateral transport within the interior part of the collision zone and lithospheric shortening along the Caucasus and Zagros mountain belts around the periphery of the collision zone. In addition, we find that the principal boundary between the westerly moving Anatolian plate and Arabia (East Anatolian fault) is presently characterized by pure left-lateral strike slip with no fault-normal convergence. This implies that “extrusion” is not presently inducing westward motion of Anatolia. On the basis of the observed kinematics, we hypothesize that deformation in the Africa-Arabia-Eurasia collision zone is driven in large part by rollback of the subducting African lithosphere beneath the Hellenic and Cyprus trenches aided by slab pull on the southeastern side of the subducting Arabian plate along the Makran subduction zone. We further suggest that the separation of Arabia from Africa is a response to plate motions induced by active subduction.

1,609 citations

Journal ArticleDOI
TL;DR: The Global Strain Rate Model (GSRM v.2.1) as mentioned in this paper is a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities.
Abstract: We present a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities. This Global Strain Rate Model (GSRM v.2.1) is a vast improvement over its predecessor both in terms of amount of data input as in an increase in spatial model resolution by factor of ∼2.5 in areas with dense data coverage. We determined 6739 velocities from time series of (mostly) continuous GPS measurements; i.e., by far the largest global velocity solution to date. We transformed 15,772 velocities from 233 (mostly) published studies onto our core solution to obtain 22,511 velocities in the same reference frame. Care is taken to not use velocities from stations (or time periods) that are affected by transient phenomena; i.e., this data set consists of velocities best representing the interseismic plate velocity. About 14% of the Earth is allowed to deform in 145,086 deforming grid cells (0.25° longitude by 0.2° latitude in dimension). The remainder of the Earth's surface is modeled as rigid spherical caps representing 50 tectonic plates. For 36 plates we present new GPS-derived angular velocities. For all the plates that can be compared with the most recent geologic plate motion model, we find that the difference in angular velocity is significant. The rigid-body rotations are used as boundary conditions in the strain rate calculations. The strain rate field is modeled using the Haines and Holt method, which uses splines to obtain an self-consistent interpolated velocity gradient tensor field, from which strain rates, vorticity rates, and expected velocities are derived. We also present expected faulting orientations in areas with significant vorticity, and update the no-net rotation reference frame associated with our global velocity gradient field. Finally, we present a global map of recurrence times for Mw=7.5 characteristic earthquakes.

608 citations

Journal ArticleDOI
TL;DR: In this article, a geodetic horizontal velocity field consistent at the scale of the Mediterranean and the surrounding Alpine belts is derived to discuss the boundary conditions around each major deforming area in the Mediterranean, to describe the main patterns of motion and deformation, to critically review the existing kinematics models and to finally point out the main unresolved kinematic questions.

365 citations

Journal ArticleDOI
TL;DR: In this article, a set of relative plate angular velocities, called GEODVEL (for GEODesy VELocity) is presented, which is based on the estimation of the position of the Earth's center and the assignment of sites to plates.
Abstract: SUMMARY Using space geodetic observations from four techniques (GPS, VLBI, SLR and DORIS), we simultaneously estimate the angular velocities of 11 major plates and the velocity of Earth's centre. We call this set of relative plate angular velocities GEODVEL (for GEODesy VELocity). Plate angular velocities depend on the estimate of the velocity of Earth's centre and on the assignment of sites to plates. Most geodetic estimates of the angular velocities of the plates are determined assuming that Earth's centre is fixed in an International Terrestrial Reference Frame (ITRF), and are therefore subject to errors in the estimate of the velocity of Earth's centre. In ITRF2005 and ITRF2000, Earth's centre is the centre of mass of Earth, oceans and atmosphere (CM); the velocity of CM is estimated by SLR observation of LAGEOS's orbit. Herein we define Earth's centre to be the centre of mass of solid Earth (CE); we determine the velocity of CE by assuming that the portions of plate interiors not near the late Pleistocene ice sheets move laterally as if they were part of a rigid spherical cap. The GEODVEL estimate of the velocity of CE is likely nearer the true velocity of CM than are the ITRF2005 and ITRF2000 estimates because (1) no phenomena can sustain a significant velocity between CM and CE, (2) the plates are indeed nearly rigid (aside from vertical motion) and (3) the velocity of CM differs between ITRF2005 and ITRF2000 by an unacceptably large speed of 1.8 mm yr−1. The velocity of Earth's centre in GEODVEL lies between that of ITRF2000 and that of ITRF2005, with the distance from ITRF2005 being about twice that from ITRF2000. Because the GEODVEL estimates of uncertainties in plate angular velocities account for uncertainty in the velocity of Earth's centre, they are more realistic than prior estimates of uncertainties. GEODVEL differs significantly from all prior global sets of relative plate angular velocities determined from space geodesy. For example, the 95 per cent confidence limits for the angular velocities of GEODVEL exclude those of REVEL (Sella et al.) for 34 of the 36 plate pairs that can be formed between any two of the nine plates with the best-constrained motion. The median angular velocity vector difference between GEODVEL and REVEL is 0.028° Myr−1, which is up to 3.1 mm yr−1 on Earth's surface. GEODVEL differs the least from the geodetic angular velocities that Altamimi et al. determine from ITRF2005. GEODVEL's 95 per cent confidence limits exclude 11 of 36 angular velocities of Altamimi et al., and the median difference is 0.015° Myr−1. GEODVEL differs significantly from nearly all relative plate angular velocities averaged over the past few million years, including those of NUVEL-1A. The difference of GEODVEL from updated 3.2 Myr angular velocities is statistically significant for all but two of 36 angular velocities with a median difference of 0.063° Myr−1. Across spreading centres, eight have slowed down while only two have sped up. We conclude that plate angular velocities over the past few decades differ significantly from the corresponding angular velocity averaged over the past 3.2 Myr.

260 citations

Journal ArticleDOI
TL;DR: The existence of synchronous geodynamic events from one end of the system to the other, although they do not have the same meaning, is emphasized in this article, where two of them are particularly important: the Campanian-Santonian (C-S) event corresponds to obduction and exhumation of high pressure-low-temperature metamorphic rocks around the Arabian promontory, inversion along the margins of the East Mediterranean basins, and lithosphere buckling in the Atlas system (Maghreb and adjacent Sahara platform).
Abstract: [1] Along the northern border of Africa, Pangea breakup has been diachronic. During the Jurassic, the Alpine Tethys propagated northeastward from the Atlantic to the Alps. During the Permian, the Neo-Tethys propagated westward from Oman to northwestern Arabia. Then a secondary and late branch of Neo-Tethys gave birth to the East Mediterranean basin. Finally the two oceans connected at end of Jurassic times, achieving the development of Africa northern plate boundary. By the Late Cretaceous, convergence between Africa and Eurasia led to the progressive closure of the Tethys realm. The continental collision is not completely achieved, and the different segments of the confrontation zone (Maghreb, central and East Mediterranean, Zagros, and Oman) expose different stages of the process. However, we emphasize the existence of synchronous geodynamic events from one end of the system to the other, although they do not have the same meaning. Two of them are particularly important. The Campanian-Santonian (C-S) event corresponds to (1) obduction and exhumation of high-pressure–low-temperature metamorphic rocks around the Arabian promontory, (2) inversion along the margins of the East Mediterranean basins, and (3) lithosphere buckling in the Atlas system (Maghreb) and adjacent Sahara platform. The middle-late Eocene (MLE) event corresponds to (1) the onset of collision at the northern corner of Arabia, (2) the onset of slab retreat in the Mediterranean, and (3) inversion along the margin of the East Mediterranean as well as in the Atlas. The C-S event coincides with a change in plate kinematics resulting in an abrupt increase of convergence velocity. The MLE event coincides with a period of strong coupling between the Africa and Eurasia plates and an abrupt decrease of convergence velocity. In the middle of the system, the central Mediterranean seems to escape to the effects of convergence and is the site of quite permanent extensional movements since the Triassic.

259 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present and interpret GPS measurements of crustal motions for the period 1988-1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of Africa.
Abstract: We present and interpret Global Positioning System (GPS) measurements of crustal motions for the period 1988–1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of the African plate. Sites on the northern Arabian platform move 18±2 mm/yr at N25°±5°W relative to Eurasia, less than the NUVEL-1A circuit closure rate (25±1 mm/yr at N21°±7°W). Preliminary motion estimates (1994–1997) for stations located in Egypt on the northeastern part of Africa show northward motion at 5–6±2 mm/yr, also slower than NUVEL-IA estimates (10±1 mm/yr at N2°±4°E). Eastern Turkey is characterized by distributed deformation, while central Turkey is characterized by coherent plate motion (internal deformation of <2 mm/yr) involving westward displacement and counterclockwise rotation of the Anatolian plate. The Anatolian plate is de-coupled from Eurasia along the right-lateral, strike-slip North Anatolian fault (NAF). We derive a best fitting Euler vector for Anatolia-Eurasia motion of 30.7°± 0.8°N, 32.6°± 0.4°E, 1.2°±0.1°/Myr. The Euler vector gives an upper bound for NAF slip rate of 24±1 mm/yr. We determine a preliminary GPS Arabia-Anatolia Euler vector of 32.9°±1.2°N, 40.3°±1.1°E, 0.8°±0.2°/Myr and an upper bound on left-lateral slip on the East Anatolian fault (EAF) of 9±1 mm/yr. The central and southern Aegean is characterized by coherent motion (internal deformation of <2 mm/yr) toward the SW at 30±1 mm/yr relative to Eurasia. Stations in the SE Aegean deviate significantly from the overall motion of the southern Aegean, showing increasing velocities toward the trench and reaching 10±1 mm/yr relative to the southern Aegean as a whole.

1,871 citations

Journal ArticleDOI
TL;DR: In this article, the evolution of the Tethys belt from the Pliensbachian (190 Ma) to the Tortonian (10 Ma) is depicted at 1 20,000,000 scale.

1,574 citations

Journal ArticleDOI
TL;DR: In this article, the authors used continuously recording GPS and survey-mode GPS (SGPS) observations to determine Euler vectors for relative motion of the African (Nubian), Arabian and Eurasian plates.
Abstract: SUMMARY We use continuously recording GPS (CGPS) and survey-mode GPS (SGPS) observations to determine Euler vectors for relative motion of the African (Nubian), Arabian and Eurasian plates. We present a well-constrained Eurasia‐Nubia Euler vector derived from 23 IGS sites in Europe and four CGPS and three SGPS sites on the Nubian Plate (−0.95 ± 4.8 ◦ N, −21.8 ± 4.3 ◦ E, 0.06 ± 0.005 ◦ Myr −1 ). We see no significant (> 1m m yr −1 ) internal deformation of the Nubian Plate. The GPS Nubian‐Eurasian Euler vector differs significantly from NUVEL-1A (21.0 ± 4.2 ◦ N, −20.6 ± 0.6 ◦ E, 0.12 ± 0.015 ◦ Myr −1 ), implying more westward motion of Africa relative to Eurasia and slower convergence in the eastern Mediterranean. The Arabia‐ Eurasia and Arabia‐Nubia GPS Euler vectors are less well determined, based on only one CGPS and three SGPS sites on the Arabian Plate. The preliminary Arabia‐Eurasia and Arabia‐ Nubia Euler vectors are 27.4 ± 1.0 ◦ N, 18.4 ± 2.5 ◦ E, 0.40 ± 0.04 ◦ Myr −1 , and 30.5 ± 1.0 ◦ N, 25.7 ± 2.3 ◦ E, 0.37 ± 0.04 ◦ Myr −1 , respectively. The GPS Arabia‐Nubia Euler vector differs significantly from NUVEL-1A (24.1 ± 1.7 ◦ N, 24.0 ± 3.5 ◦ E, 0.40 ± 0.05 ◦ Myr −1 ), but is statistically consistent at the 95 per cent confidence level with the revised Euler vector reported by Chu & Gordon based on a re-evaluation of magnetic anomalies in the Red Sea (31.5 ± 1.2 ◦ N, 23.0 ± 2.7 ◦ E, 0.40 ± 0.05 ◦ Myr −1 ). The motion implied in the Gulf of Aqaba and on the Dead Sea fault (DSF) by the new GPS Nubia‐Arabia Euler vector (i.e. ignoring possible Sinai block motion and possible internal plate deformation) grades from pure left lateral strike-slip in the Gulf and on the southern DSF with increasing compression on the central and northern DSF with relative motion increasing from 5.6 to 7.5 mm yr −1 (± 1m m yr −1 ) from south to north. Along the northern DSF (i.e. north of the Lebanon restraining bend) motion is partitioned between 6 ± 1m m yr −1 left-lateral motion parallel to the fault trace and 4 ± 1m m yr −1 faultnormal compression. Relative motions on other plate boundaries (including the Anatolian and Aegean microplates) derived from the GPS Euler vectors agree qualitatively with the sense of motion indicated by focal mechanisms for large crustal earthquakes (M > 6). Where data are available on fault-slip rates on plate bounding faults (North Anatolian fault, East Anatolian fault, Dead Sea fault, Red Sea rift), they are generally lower than, but not significantly different from, the full plate motion estimates suggesting that the majority of relative plate motion is accommodated on these structures.

683 citations

Journal ArticleDOI
18 Apr 1970-Nature
TL;DR: The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins.
Abstract: The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.

666 citations

Journal ArticleDOI
TL;DR: In this article, an approach for efficiently combining different types of geodetic data to estimate time-dependent motions of stations in a region of active deformation is discussed. But the work is limited to the case of finite constraints and stochastic perturbation of parameters.
Abstract: We discuss an approach for efficiently combining different types of geodetic data to estimate time-dependent motions of stations in a region of active deformation. The primary observations are analyzed separately to produce loosely constrained estimates of station positions and coordinate system parameters which are then combined with appropriate constraints to estimate velocities and coseismic displacements. We define noninteger degrees of freedom to handle the case of finite constraints and stochastic perturbation of parameters and develop statistical tests for determining compatibility between different data sets. With these developments, we show an example of combining space and terrestrial geodetic data to obtain the deformation field in southern California.

393 citations