scispace - formally typeset
Open AccessJournal ArticleDOI

Gradient Damage Models and Their Use to Approximate Brittle Fracture

Reads0
Chats0
TLDR
In this paper, a variational approach to brittle fracture approximates the crack evolution in an elastic solid through the use of gradient damage models, and a stability criterion in terms of the positivity of the second derivative of the total energy under the unilateral constraint induced by the irreversibility of damage is introduced.
Abstract
In its numerical implementation, the variational approach to brittle fracture approximates the crack evolution in an elastic solid through the use of gradient damage models. In this article, we first formulate the quasi-static evolution problem for a general class of such damage models. Then, we introduce a stability criterion in terms of the positivity of the second derivative of the total energy under the unilateral constraint induced by the irreversibility of damage. These concepts are applied in the particular setting of a one-dimensional traction test. We construct homogeneous as well as localized damage solutions in a closed form and illustrate the concepts of loss of stability, of scale effects, of damage localization, and of structural failure. Considering several specific constitutive models, stress

read more

Citations
More filters
Journal ArticleDOI

A phase-field description of dynamic brittle fracture

TL;DR: It is shown that the combination of the phase-field model and local adaptive refinement provides an effective method for simulating fracture in three dimensions.
Journal ArticleDOI

A unified phase-field theory for the mechanics of damage and quasi-brittle failure

TL;DR: In this paper, a unified phase-field theory for the mechanics of damage and quasi-brittle failure is proposed within the framework of thermodynamics, where the crack phase field and its gradient are introduced to regularize the sharp crack topology in a purely geometric context.
Journal ArticleDOI

Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids

TL;DR: In this paper, a generalization of recently developed continuum phase field models for brittle fracture towards fully coupled thermo-mechanical and multi-physics problems at large strains is presented.
Journal ArticleDOI

Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic-Plastic Solids

TL;DR: In this article, a generalization of recently developed continuum phase field models from brittle to ductile fracture coupled with thermo-plasticity at finite strains is presented, which uses a geometric approach to the diffusive crack modeling based on the introduction of a balance equation for a regularized crack surface.
Journal ArticleDOI

A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects

TL;DR: In this paper, a cubic degradation function was proposed to provide a stress-strain response prior to crack initiation, which more closely approximates linear elastic behavior, and a derivation of the governing equations in terms of a general energy potential from balance laws that describe the kinematics of both the body and phase-field.
References
More filters
Journal ArticleDOI

Optimal approximations by piecewise smooth functions and associated variational problems

TL;DR: In this article, the authors introduce and study the most basic properties of three new variational problems which are suggested by applications to computer vision, and study their application in computer vision.
Book

Functions of Bounded Variation and Free Discontinuity Problems

TL;DR: The Mumford-Shah functional minimiser of free continuity problems as mentioned in this paper is a special function of the Mumfordshah functional and has been shown to be a function of free discontinuity set.
Journal ArticleDOI

Revisiting brittle fracture as an energy minimization problem

TL;DR: In this paper, a variational model of quasistatic crack evolution is proposed, which frees itself of the usual constraints of that theory : a preexisting crack and a well-defined crack path.
Journal ArticleDOI

Particle reinforced aluminium and magnesium matrix composites

TL;DR: In this article, the current status of particle reinforced metal matrix composites is reviewed and the different types of reinforcement being used, together with the alternative processing methods, are discussed, and different factors have to be taken into consideration to produce a high quality billet.
Journal ArticleDOI

FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs)

TL;DR: By Luigi Ambrosio, Nicolo Fucso and Diego Pallara: 434 pp.
Related Papers (5)