scispace - formally typeset
Journal ArticleDOI

Gradients in silicic magma chambers: Implications for lithospheric magmatism

Wes Hildreth
- 10 Nov 1981 - 
- Vol. 86, pp 10153-10192
Reads0
Chats0
TLDR
In this article, the authors studied the effect of pre-emptive and preemptive gradients in T and O 2 in a variety of compositionally zoned ash flow tuffs.
Abstract
Every large eruption of nonbasaltic magma taps a magma reservoir that is thermally and compositionally zoned. Most small eruptions also tap parts of heterogeneous and evolving magmatic systems. Several kinds of compositionally zoned ash flow tuffs provide examples of preemptive gradients in T and ƒO2, in chemical and isotopic composition, and in the variety, abundance, and composition of phenocrysts. Such gradients help to constrain the mechanisms of magmatic differentiation operating in each system. Roofward decreases in both T and phenocryst content suggest water concentration gradients in magma chambers. Wide compositional gaps are common features of large eruptions, proving the existence of such gaps in a variety of magmatic systems. Nearly all magmatic systems are ‘fundamentally basaltic’ in the sense that mantle-derived magmas supply heat and mass to crustal systems that evolve a variety of compositional ranges. Feedback between crustal melting and interception of basaltic intrusions focuses and amplifies magmatic anomalies, suppresses basaltic volcanism, produces and sustains crustal magma chambers, and sometimes culminates in large-scale diapirism. Degassing of basalt crystallizing in the roots of these systems provides a flux of He, CO2, S, halogens, and other components, some of which may influence chemical transport in the overlying, more silicic zones. Basaltic magmas become andesitic by concurrent fractionation and assimilation of partial melts over a large depth range during protracted upward percolation in a plexus of crustal conduits. Zonation in the andesitic-dacitic compositional range develops subsequently within magma chambers, primarily by crystal fractionation. Some dacitic and rhyolitic liquids may separate from less-silicic parents by means of ascending boundary layers along the walls of convecting magma chambers. Many rhyolites, however, are direct partial melts of crustal rocks, and still others fractionate from crystal-rich intermediate parents. The zoning of rhyolitic magma is accomplished predominantly by liquid state thermodiffusion and volatile complexing; liquid structural gradients may be important, and thermal gradients across magma chamber boundary layers are critical. Intracontinental silicic batholiths form where extensional tectonism favors coalescence of crustal partial melts instead of hybridization with the intrusive basaltic magma. Cordilleran batholiths, however, result from prolonged diffuse injection of the crust by basalt that hybridizes, fractionates, and preheats the crust with pervasive mafic to intermediate forerunners, culminating in large-scale diapiric mobilization of partially molten zones from which granodioritic magmas separate. Much of the variability among magmatic systems probably reflects the depth variation of relative rates of transport of magma, heat, and volatile components, as controlled in turn by the orientation and relative magnitudes of principal stresses in the lithosphere, the thickness and composition of the affected crust, and variations in the rate and longevity of basaltic magma supply. Extension of the lithosphere may reduce the susceptibility of basaltic magmas to hybridization in the crust, but it can also enhance the role of mantle-derived volatiles in chemical transport.

read more

Citations
More filters
Journal ArticleDOI

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

TL;DR: In this article, a data bank containing over 600 high quality trace element analyses of granites from known settings was used to demonstrate using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics.
Journal ArticleDOI

Crustal contributions to arc magmatism in the Andes of Central Chile

TL;DR: In this article, 15 andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis.
Journal ArticleDOI

The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones

TL;DR: In this article, a model for the generation of intermediate and silicic igneous rocks is presented, based on experimental data and numerical modeling, which is directed at subduction-related magmatism, but has general applicability to magmas generated in other plate tectonic settings, including continental rift zones.
Journal ArticleDOI

Geochemical characteristics of collision-zone magmatism

TL;DR: The results of a systematic geochemical study of intermediate and acid intrusive rocks from a number of continent-continent collision zones of Phanerozoic age were reported in this paper.
Journal ArticleDOI

Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas

TL;DR: In this article, the authors suggest that during the period from 180 to 80 Ma, the slab dip angle of Paleo-Pacific plate subduction underneath SE China increased from a very low angle to a median angle, and the magmatic activity of the SE China continental margin migrated oceanward to the southeast.
References
More filters
OtherDOI

Tectonics of the Indonesian region

TL;DR: The plate-tectonic evolution of a region can be deduced by following the as-sumptions that subduction zones are characterized by ophiolite, melange, wildflysch, and blueschist, that intermediate and silicic calc-alkaline igneous rocks form above Benioff zones, and that truncations of orogenic belts indicate rifting as mentioned in this paper.
OtherDOI

Tectonics of the Indonesian Region

TL;DR: The plate-tectonic evolution of a region can be deduced by following the as-sumptions that subduction zones are characterized by ophiolite, melange, wildflysch, and blueschist, that intermediate and silicic calc-alkaline igneous rocks form above Benioff zones, and that truncations of orogenic belts indicate rifting as discussed by the authors.
Related Papers (5)