scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Grafting Arborescences for Extra Resilience of Fast Rerouting Schemes

TL;DR: In this article, the authors present several fast rerouting algorithms which are not limited by spanning trees, but rather extend and combine multiple spanning arborescences to improve resilience.
Abstract: To provide a high availability and to be able to quickly react to link failures, most communication networks feature fast rerouting (FRR) mechanisms in the data plane. However, configuring these mechanisms to provide a high resilience against multiple failures is algorithmically challenging, as rerouting rules can only depend on local failure information and need to be pre-defined. This paper is motivated by the observation that the common approach to design fast rerouting algorithms, based on spanning trees and covering arborescences, comes at a cost of reduced resilience as it does not fully exploit the available links in heterogeneous topologies. We present several novel fast rerouting algorithms which are not limited by spanning trees, but rather extend and combine ("graft") multiple spanning arborescences to improve resilience. We compare our algorithms analytically and empirically, and show that they can significantly improve not only the resilience, but also accelerate the preprocessing to generate the local fast failover rules.
Citations
More filters
Posted ContentDOI
TL;DR: In this article, the authors propose to leverage the network's path diversity to extend edge disjoint path mechanisms to tree routing, in order to improve the performance of fast rerouting.
Abstract: Today's communication networks have stringent availability requirements and hence need to rapidly restore connectivity after failures. Modern networks thus implement various forms of fast reroute mechanisms in the data plane, to bridge the gap to slow global control plane convergence. State-of-the-art fast reroute commonly relies on disjoint route structures, to offer multiple independent paths to the destination. We propose to leverage the network's path diversity to extend edge disjoint path mechanisms to tree routing, in order to improve the performance of fast rerouting. We present two such tree-mechanisms in detail and show that they boost resilience by up to 12% and 25% respectively on real-world, synthetic, and data center topologies, while still retaining good path length qualities.

5 citations

Proceedings ArticleDOI
07 Apr 2022
TL;DR: A more complete landscape of the feasibility of perfect resilience is charted and a perhaps surprisingly large price of locality in static fast rerouting mechanisms is shown: even when source and destination remain connected by a linear number of link-disjoint paths after link failures, local rerouted algorithms cannot find any of them which leads to a disconnection on the routing level.
Abstract: Modern communication networks feature fully decen-tralized flow rerouting mechanisms which allow them to quickly react to link failures. This paper revisits the fundamental algorithmic problem underlying such local fast rerouting mechanisms. Is it possible to achieve perfect resilience, i.e., to define local routing tables which preserve connectivity as long as the underlying network is still connected? Feigenbaum et al. [1] and Foerster et al. [2] showed that, unfortunately, it is impossible in general.This paper charts a more complete landscape of the feasibility of perfect resilience. We first show a perhaps surprisingly large price of locality in static fast rerouting mechanisms: even when source and destination remain connected by a linear number of link-disjoint paths after link failures, local rerouting algorithms cannot find any of them which leads to a disconnection on the routing level. This motivates us to study resilience in graphs which exclude certain dense minors, such as cliques or a complete bipartite graphs, and in particular, provide characterizations of the possibility of perfect resilience in different routing models. We provide further insights into the price of locality by showing impossibility results for few failures and investigate perfect resilience on Topology Zoo networks.

3 citations

Proceedings ArticleDOI
01 Jun 2022
TL;DR: In this article , the authors revisited the fundamental algorithmic problem underlying local fast rerouting mechanisms and showed that even when source and destination remain connected by a linear number of link disjoint paths after link failures, local routing algorithms cannot find any of them which leads to a disconnection on the routing level.
Abstract: Modern communication networks feature fully decen-tralized flow rerouting mechanisms which allow them to quickly react to link failures. This paper revisits the fundamental algorithmic problem underlying such local fast rerouting mechanisms. Is it possible to achieve perfect resilience, i.e., to define local routing tables which preserve connectivity as long as the underlying network is still connected? Feigenbaum et al. [1] and Foerster et al. [2] showed that, unfortunately, it is impossible in general.This paper charts a more complete landscape of the feasibility of perfect resilience. We first show a perhaps surprisingly large price of locality in static fast rerouting mechanisms: even when source and destination remain connected by a linear number of link-disjoint paths after link failures, local rerouting algorithms cannot find any of them which leads to a disconnection on the routing level. This motivates us to study resilience in graphs which exclude certain dense minors, such as cliques or a complete bipartite graphs, and in particular, provide characterizations of the possibility of perfect resilience in different routing models. We provide further insights into the price of locality by showing impossibility results for few failures and investigate perfect resilience on Topology Zoo networks.

2 citations

References
More filters
Journal ArticleDOI
04 Jun 1998-Nature
TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Abstract: Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

39,297 citations

Journal ArticleDOI
31 Mar 2008
TL;DR: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day, based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries.
Abstract: This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks they use every day. OpenFlow is based on an Ethernet switch, with an internal flow-table, and a standardized interface to add and remove flow entries. Our goal is to encourage networking vendors to add OpenFlow to their switch products for deployment in college campus backbones and wiring closets. We believe that OpenFlow is a pragmatic compromise: on one hand, it allows researchers to run experiments on heterogeneous switches in a uniform way at line-rate and with high port-density; while on the other hand, vendors do not need to expose the internal workings of their switches. In addition to allowing researchers to evaluate their ideas in real-world traffic settings, OpenFlow could serve as a useful campus component in proposed large-scale testbeds like GENI. Two buildings at Stanford University will soon run OpenFlow networks, using commercial Ethernet switches and routers. We will work to encourage deployment at other schools; and We encourage you to consider deploying OpenFlow in your university network too

9,138 citations

01 Apr 1998
TL;DR: This memo documents version 2 of the OSPF protocol, a link-state routing protocol designed to be run internal to a single Autonomous System.
Abstract: This memo documents version 2 of the OSPF protocol. OSPF is a link-state routing protocol. It is designed to be run internal to a single Autonomous System. Each OSPF router maintains an identical database describing the Autonomous System's topology. From this database, a routing table is calculated by constructing a shortest- path tree.

2,413 citations

Proceedings ArticleDOI
30 Aug 2010
TL;DR: DCTCP enables the applications to handle 10X the current background traffic, without impacting foreground traffic, thus largely eliminating incast problems, and delivers the same or better throughput than TCP, while using 90% less buffer space.
Abstract: Cloud data centers host diverse applications, mixing workloads that require small predictable latency with others requiring large sustained throughput. In this environment, today's state-of-the-art TCP protocol falls short. We present measurements of a 6000 server production cluster and reveal impairments that lead to high application latencies, rooted in TCP's demands on the limited buffer space available in data center switches. For example, bandwidth hungry "background" flows build up queues at the switches, and thus impact the performance of latency sensitive "foreground" traffic.To address these problems, we propose DCTCP, a TCP-like protocol for data center networks. DCTCP leverages Explicit Congestion Notification (ECN) in the network to provide multi-bit feedback to the end hosts. We evaluate DCTCP at 1 and 10Gbps speeds using commodity, shallow buffered switches. We find DCTCP delivers the same or better throughput than TCP, while using 90% less buffer space. Unlike TCP, DCTCP also provides high burst tolerance and low latency for short flows. In handling workloads derived from operational measurements, we found DCTCP enables the applications to handle 10X the current background traffic, without impacting foreground traffic. Further, a 10X increase in foreground traffic does not cause any timeouts, thus largely eliminating incast problems.

1,734 citations

Journal ArticleDOI
06 Oct 2005
TL;DR: This work advocate a complete refactoring of the functionality and proposes three key principles--network-level objectives, network-wide views, and direct control--that it believes should underlie a new architecture, called 4D, after the architecture's four planes: decision, dissemination, discovery, and data.
Abstract: Today's data networks are surprisingly fragile and difficult to manage. We argue that the root of these problems lies in the complexity of the control and management planes--the software and protocols coordinating network elements--and particularly the way the decision logic and the distributed-systems issues are inexorably intertwined. We advocate a complete refactoring of the functionality and propose three key principles--network-level objectives, network-wide views, and direct control--that we believe should underlie a new architecture. Following these principles, we identify an extreme design point that we call "4D," after the architecture's four planes: decision, dissemination, discovery, and data. The 4D architecture completely separates an AS's decision logic from pro-tocols that govern the interaction among network elements. The AS-level objectives are specified in the decision plane, and en-forced through direct configuration of the state that drives how the data plane forwards packets. In the 4D architecture, the routers and switches simply forward packets at the behest of the decision plane, and collect measurement data to aid the decision plane in controlling the network. Although 4D would involve substantial changes to today's control and management planes, the format of data packets does not need to change; this eases the deployment path for the 4D architecture, while still enabling substantial innovation in network control and management. We hope that exploring an extreme design point will help focus the attention of the research and industrial communities on this crucially important and intellectually challenging area.

805 citations