scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants

01 Aug 2013-Carbon (Pergamon)-Vol. 60, pp 437-444
TL;DR: In this article, a high-resolution transmission electron microscope analysis was conducted to confirm the existence of the Fe 2 O 3 nanoparticles in the GO-Fe 2 O3 catalyst, and the results showed that the catalyst exhibited excellent catalytic property at a wide pH range of 2.09-10.09 and stable catalytic activity after seven recycles.
About: This article is published in Carbon.The article was published on 2013-08-01. It has received 334 citations till now. The article focuses on the topics: Catalyst support & Catalyst poisoning.
Citations
More filters
Journal ArticleDOI
02 Nov 2016-Small
TL;DR: Through reviewing the significant advances on this topic, it may provide new opportunities for designing highly efficient 2D graphene-based photocatalysts for various applications in photocatalysis and other fields, such as solar cells, thermal catalysis, separation, and purification.
Abstract: In recent years, heterogeneous photocatalysis has received much research interest because of its powerful potential applications in tackling many important energy and environmental challenges at a global level in an economically sustainable manner. Due to their unique optical, electrical, and physicochemical properties, various 2D graphene nanosheets-supported semiconductor composite photocatalysts have been widely constructed and applied in different photocatalytic fields. In this review, fundamental mechanisms of heterogeneous photocatalysis, including thermodynamic and kinetics requirements, are first systematically summarized. Then, the photocatalysis-related properties of graphene and its derivatives, and design rules and synthesis methods of graphene-based composites are highlighted. Importantly, different design strategies, including doping and sensitization of semiconductors by graphene, improving electrical conductivity of graphene, increasing eloectrocatalytic active sites on graphene, strengthening interface coupling between semiconductors and graphene, fabricating micro/nano architectures, constructing multi-junction nanocomposites, enhancing photostability of semiconductors, and utilizing the synergistic effect of various modification strategies, are thoroughly summarized. The important applications including photocatalytic pollutant degradation, H2 production, and CO2 reduction are also addressed. Through reviewing the significant advances on this topic, it may provide new opportunities for designing highly efficient 2D graphene-based photocatalysts for various applications in photocatalysis and other fields, such as solar cells, thermal catalysis, separation, and purification.

766 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the research that has been carried out to overcome these basic limitations and to enhance the photocatalytic activity of α-Fe 2 O 3.
Abstract: Photocatalysis has been attracting much research interest because of its wide applications in renewable energy and environmental remediation. There are many materials that are found to show good photocatalytic activity in the presence of ultraviolet (UV) and visible light. However, the applications of these materials are limited to the UV portion of sunlight. α-Fe 2 O 3 has an advantage over the other conventional materials like TiO 2 , ZnO, etc . in using solar energy for photocatalytic applications due to its lower band gap ∼2.2 eV value. As a result of which Fe 2 O 3 is capable of absorbing a large portion of the visible solar spectrum (absorbance edge ∼600 nm). Also its good chemical stability in aqueous medium, low cost, abundance and nontoxic nature makes it a promising material for photocatalytic water treatment and water splitting applications. Except these advantages the usage of Fe 2 O 3 has been restricted by many anomalies such as higher e–h recombination effect, low diffusion length and VB positioning (VB is positive with respect to H + /H 2 potential). This article reviews the research that has been carried out to overcome these basic limitations and to enhance the photocatalytic activity of α-Fe 2 O 3 .

710 citations

Journal ArticleDOI
TL;DR: The fundamentals, advantages and disadvantages of single and coupled Fenton optimization processes for organic wastewater treatment were reviewed, and some important operation parameters on the degradation efficiency of organic pollutants was studied to provide guidance for the optimization of operation parameters.

598 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene-based heterojunction photocatalysts, and classification and comparison of them are discussed.

367 citations

Journal ArticleDOI
TL;DR: In this paper, the types and structures of organic pollutants, and the classes of nanomaterials and their application for the remediation of organic contaminants in water are systematically summarized.

339 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: Graphene oxide paper is reported, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets that outperforms many other paper-like materials in stiffness and strength.
Abstract: Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

5,117 citations