scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Graphene Oxide Sheets at Interfaces

19 May 2010-Journal of the American Chemical Society (American Chemical Society)-Vol. 132, Iss: 23, pp 8180-8186
TL;DR: It is reported that GO is an amphiphile with hydrophilic edges and a more hydrophobic basal plane, and the ease of its conversion to chemically modified graphene could enable new opportunities in solution processing of functional materials.
Abstract: Graphite oxide sheet, now called graphene oxide (GO), is the product of chemical exfoliation of graphite and has been known for more than a century. GO has been largely viewed as hydrophilic, presumably due to its excellent colloidal stability in water. Here we report that GO is an amphiphile with hydrophilic edges and a more hydrophobic basal plane. GO can act like a surfactant, as measured by its ability to adsorb on interfaces and lower the surface or interfacial tension. Since the degree of ionization of the edge −COOH groups is affected by pH, GO’s amphiphilicity can be tuned by pH. In addition, size-dependent amphiphilicity of GO sheets is observed. Since each GO sheet is a single molecule as well as a colloidal particle, the molecule−colloid duality makes it behave like both a molecular and a colloidal surfactant. For example, GO is capable of creating highly stable Pickering emulsions of organic solvents like solid particles. It can also act as a molecular dispersing agent to process insoluble mat...
Citations
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: Graphene, a one-atom layer of graphite, possesses a unique two-dimensional (2D) structure, high conductivity and charge carrier mobility, huge specific surface area, high transparency and great mechanical strength as mentioned in this paper.
Abstract: Graphene, a one-atom layer of graphite, possesses a unique two-dimensional (2D) structure, high conductivity and charge carrier mobility, huge specific surface area, high transparency and great mechanical strength. Thus, it is expected to be an ideal material for energy storage and conversion. During the past several years, a variety of graphene based materials (GBMs) have been successfully prepared and applied in supercapacitors, lithium ion batteries, water splitting, electrocatalysts for fuel cells, and solar cells. In this review, we will summarize the recent advances in the synthesis and applications of GBMs in these energy related systems. The challenges and prospects of graphene based new energy materials are also discussed.

1,750 citations

Journal ArticleDOI
01 Mar 2013-Carbon
TL;DR: In this article, the formation of different types of oxygen containing functional groups in GO and their influences on its structure were analyzed using X-ray diffraction (XRD), Fourier transform infra-red spectra, x-ray photoelectron spectra (XPS), zeta potential analysis and Raman spectroscopy.

1,428 citations


Cites background from "Graphene Oxide Sheets at Interfaces..."

  • ...The only difference between them is the number of stacked layers, GO possess a monolayer or just a few stacked layers, while graphite oxide contains a greater number of stacked layers [3,4]....

    [...]

  • ...[4] Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J....

    [...]

Journal ArticleDOI
TL;DR: A simple scalable method is demonstrated to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl and decrease exponentially with decreasing sieve size, but water transport is weakly affected.
Abstract: Ion permeation and selectivity of graphene oxide membranes with sub-nm channels dramatically alters with the change in interlayer distance due to dehydration effects whereas permeation of water molecules remains largely unaffected. Graphene oxide membranes show exceptional molecular permeation properties, with promise for many applications1,2,3,4,5. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ∼9 A (ref. 4), which is larger than the diameters of hydrated ions of common salts4,6. The cutoff is determined by the interlayer spacing (d) of ∼13.5 A, typical for graphene oxide laminates that swell in water2,4. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here, we describe how to control d by physical confinement and achieve accurate and tunable ion sieving. Membranes with d from ∼9.8 A to 6.4 A are demonstrated, providing a sieve size smaller than the diameters of hydrated ions. In this regime, ion permeation is found to be thermally activated with energy barriers of ∼10–100 kJ mol–1 depending on d. Importantly, permeation rates decrease exponentially with decreasing sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for the entry of water molecules and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.

1,297 citations

Journal ArticleDOI
TL;DR: It is demonstrated that particle size, particulate state, and oxygen content/surface charge of graphene have a strong impact on biological/toxicological responses to red blood cells.
Abstract: Two-dimensional carbon-based nanomaterials, including graphene oxide and graphene, are potential candidates for biomedical applications such as sensors, cell labeling, bacterial inhibition, and drug delivery. Herein, we explore the biocompatibility of graphene-related materials with controlled physical and chemical properties. The size and extent of exfoliation of graphene oxide sheets was varied by sonication intensity and time. Graphene sheets were obtained from graphene oxide by a simple (hydrazine-free) hydrothermal route. The particle size, morphology, exfoliation extent, oxygen content, and surface charge of graphene oxide and graphene were characterized by wide-angle powder X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and zeta-potential. One method of toxicity assessment was based on measurement of the efflux of hemoglobin from suspended red blood cells. At the smallest size, graphene oxide showed the greatest hemolytic activity, whereas ag...

1,180 citations

References
More filters
Journal ArticleDOI
TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Abstract: Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

8,534 citations

Journal ArticleDOI
TL;DR: The use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene is reviewed, which is both versatile and scalable, and is adaptable to a wide variety of applications.
Abstract: Interest in graphene centres on its excellent mechanical, electrical, thermal and optical properties, its very high specific surface area, and our ability to influence these properties through chemical functionalization. There are a number of methods for generating graphene and chemically modified graphene from graphite and derivatives of graphite, each with different advantages and disadvantages. Here we review the use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene. This approach is both versatile and scalable, and is adaptable to a wide variety of applications.

6,178 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: Graphene oxide paper is reported, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets that outperforms many other paper-like materials in stiffness and strength.
Abstract: Free-standing paper-like or foil-like materials are an integral part of our technological society. Their uses include protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, electronic or optoelectronic components, and molecular storage. Inorganic 'paper-like' materials based on nanoscale components such as exfoliated vermiculite or mica platelets have been intensively studied and commercialized as protective coatings, high-temperature binders, dielectric barriers and gas-impermeable membranes. Carbon-based flexible graphite foils composed of stacked platelets of expanded graphite have long been used in packing and gasketing applications because of their chemical resistivity against most media, superior sealability over a wide temperature range, and impermeability to fluids. The discovery of carbon nanotubes brought about bucky paper, which displays excellent mechanical and electrical properties that make it potentially suitable for fuel cell and structural composite applications. Here we report the preparation and characterization of graphene oxide paper, a free-standing carbon-based membrane material made by flow-directed assembly of individual graphene oxide sheets. This new material outperforms many other paper-like materials in stiffness and strength. Its combination of macroscopic flexibility and stiffness is a result of a unique interlocking-tile arrangement of the nanoscale graphene oxide sheets.

5,117 citations

Journal ArticleDOI
TL;DR: The results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
Abstract: It is known that many potent, often aromatic drugs are water insoluble, which has hampered their use for disease treatment. In this work, we functionalized nanographene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO−PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin (CPT) analogue, SN38, noncovalently via π−π stacking. The resulting NGO−PEG−SN38 complex exhibited excellent water solubility while maintaining its high cancer cell killing potency similar to that of the free SN38 molecules in organic solvents. The efficacy of NGO−PEG−SN38 was far higher than that of irinotecan (CPT-11), a FDA-approved water soluble SN38 prodrug used for the treatment of colon cancer. Our results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.

3,217 citations