scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce

01 Oct 2011-Carbon (Elsevier)-Vol. 49, Iss: 12, pp 3907-3919
TL;DR: In this article, the effects of graphene on root and shoot growth, biomass, shape, cell death, and reactive oxygen species (ROS) of cabbage, tomato, red spinach, and lettuce, were investigated using a concentration range from 500 to 2000 mg/L.
About: This article is published in Carbon.The article was published on 2011-10-01 and is currently open access. It has received 326 citations till now. The article focuses on the topics: Spinach & Phytotoxicity.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: This review discusses recent results based on in vitro and in vivo cytotoxicity and genotoxicity studies of graphene-related materials and critically examines the methodologies employed to evaluate their toxicities.
Abstract: Graphene and its derivatives are promising candidates for important biomedical applications because of their versatility. The prospective use of graphene-based materials in a biological context requires a detailed comprehension of the toxicity of these materials. Moreover, due to the expanding applications of nanotechnology, human and environmental exposures to graphene-based nanomaterials are likely to increase in the future. Because of the potential risk factors associated with the manufacture and use of graphene-related materials, the number of nanotoxicological studies of these compounds has been increasing rapidly in the past decade. These studies have researched the effects of the nanostructural/biological interactions on different organizational levels of the living system, from biomolecules to animals. This review discusses recent results based on in vitro and in vivo cytotoxicity and genotoxicity studies of graphene-related materials and critically examines the methodologies employed to evaluate ...

671 citations

Journal ArticleDOI
TL;DR: The current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels is summarized to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.
Abstract: While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.

612 citations

Journal ArticleDOI
TL;DR: The mechanisms of GFNs toxicity at the cellular level are reviewed and the remaining unclear points on toxic mechanisms such as membrane damage are presented.
Abstract: Graphene-family nanomaterials (GFNs) including pristine graphene, reduced graphene oxide (rGO) and graphene oxide (GO) offer great application potential, leading to the possibility of their release into aquatic environments. Upon exposure, graphene/rGO and GO exhibit different adsorption properties toward environmental adsorbates, thus the molecular interactions at the GFN–water interface are discussed. After solute adsorption, the dispersion/aggregation behaviors of GFNs can be altered by solution chemistry, as well as by the presence of colloidal particles and biocolloids. GO has different dispersion performance from pristine graphene and rGO, which is further demonstrated from surface properties. Upon exposure in aquatic environments, GFNs have adverse impacts on aquatic organisms (e.g., bacteria, algae, plants, invertebrates, and fish). The mechanisms of GFNs toxicity at the cellular level are reviewed and the remaining unclear points on toxic mechanisms such as membrane damage are presented. Moreover...

546 citations

Journal ArticleDOI
TL;DR: The authors in this article presented the output of the fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered.
Abstract: This paper presents the output of our fifth annual horizon-scanning exercise, which aims to identify topics that increasingly may affect conservation of biological diversity, but have yet to be widely considered. A team of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics which were identified via an iterative, Delphi-like process. The 15 topics include a carbon market induced financial crash, rapid geographic expansion of macroalgal cultivation, genetic control of invasive species, probiotic therapy for amphibians, and an emerging snake fungal disease.

543 citations


Cites background from "Graphene phytotoxicity in the seedl..."

  • ...54 Begum, P. et al. (2011) Graphene phytotoxicity in the seedling stage of...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations


"Graphene phytotoxicity in the seedl..." refers background in this paper

  • ...Graphene, the most recently discovered carbon allotrope, is a two-dimensional building block of atomic thickness that can be stacked into three-dimensional graphite, rolled into one-dimensional nanotubes, or wrapped into zero-dimensional fullerenes [2]....

    [...]

PatentDOI

26,456 citations


"Graphene phytotoxicity in the seedl..." refers methods in this paper

  • ...Preparation of water-soluble graphene Water-soluble graphene was obtained from natural graphite (SP-1, Bay Carbon) by using a modified Hummers and Offeman’s method [27]....

    [...]

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Abstract: The remarkable mechanical properties of carbon nanotubes arise from the exceptional strength and stiffness of the atomically thin carbon sheets (graphene) from which they are formed. In contrast, bulk graphite, a polycrystalline material, has low fracture strength and tends to suffer failure either by delamination of graphene sheets or at grain boundaries between the crystals. Now Stankovich et al. have produced an inexpensive polymer-matrix composite by separating graphene sheets from graphite and chemically tuning them. The material contains dispersed graphene sheets and offers access to a broad range of useful thermal, electrical and mechanical properties. Individual sheets of graphene can be readily incorporated into a polymer matrix, giving rise to composite materials having potentially useful electronic properties. Graphene sheets—one-atom-thick two-dimensional layers of sp2-bonded carbon—are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (∼3,000 W m-1 K-1 and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects1,2,3; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties4,5,6,7,8. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene–graphene composite formed by this route exhibits a percolation threshold10 of ∼0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes11; at only 1 volume per cent, this composite has a conductivity of ∼0.1 S m-1, sufficient for many electrical applications12. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

11,866 citations


"Graphene phytotoxicity in the seedl..." refers background in this paper

  • ...[33] with the corrugation and scrolling that are fundamental to graphene [34]....

    [...]

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations


"Graphene phytotoxicity in the seedl..." refers background in this paper

  • ...ROS measurements and H2O2 detection Plants continuously produce ROS as byproducts of various metabolic pathways, but the excess accumulation of ROS leads to oxidative stress and cell death [39, 40]....

    [...]

  • ...In fact, ROS are the key signaling molecules and could be induced by many exogenous stimuli [39]....

    [...]