scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Graphene reinforced alumina nano-composites

01 Nov 2013-Carbon (Elsevier)-Vol. 64, pp 359-369
TL;DR: In this paper, the authors used liquid phase exfoliation and dispersed graphene in an alumina matrix using an ultrasonication and powder processing route, and measured fracture toughness with the indentation and chevron notch methods.
About: This article is published in Carbon.The article was published on 2013-11-01. It has received 260 citations till now. The article focuses on the topics: Graphene & Fracture toughness.
Citations
More filters
Journal ArticleDOI
TL;DR: The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics as discussed by the authors. But this review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements.
Abstract: This review critically examines the current state of graphene reinforced metal (GNP-MMC) and ceramic matrix composites (GNP-CMC) The use of graphene as reinforcement for structural materials is motivated by their exceptional mechanical/functional properties and their unique physical/chemical characteristics This review focuses on MMCs and CMCs because of their technological importance for structural applications and the unique challenges associated with developing high-temperature composites with nanoparticle reinforcements The review discusses processing techniques, effects of graphene on the mechanical behaviour of GNP-MMCs and GNP-CMCs, including early studies on the tribological performance of graphene-reinforced composites, where graphene has shown signs of serving as a protective and lubricious phase Additionally, the unique functional properties endowed by graphene to GNP-MMCs and GNP-CMCs, such as enhanced thermal/electrical conductivity, improved oxidation resistance, and excellent bi

456 citations

Journal ArticleDOI
01 Apr 2014-Carbon
TL;DR: In this article, the possibility of using multi-layer graphene (MLG) particles as reinforcement for enhancing the mechanical properties of Cu matrix composites was explored, and the combination of ball milling and high-ratio differential speed rolling (HRDSR) techniques was utilized to fabricate the 0.5 and 1.1% MLG/Cu composites.

305 citations

Journal ArticleDOI
TL;DR: The synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process is reported on.
Abstract: It is of critical importance to improve toughness, strength, and wear-resistance together for the development of advanced structural materials. Herein, we report on the synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process. The wear resistance of the composites was increased by one order of magnitude even under high normal load condition (25 N) as a result of a tribological effect of graphene along with enhanced fracture toughness (KIC) and flexural strength (σf) of the composites by ~75% (5.60 MPa·m1/2) and ~25% (430 MPa), respectively, compared with those of pure Al2O3. Furthermore, we found that only a small fraction of ultra-thin graphene (0.25–0.5 vol%, platelet thickness of 2–5 nm) was enough to reinforce the composite. In contrast to unoxidized graphene, graphene oxide (G-O) and reduced graphene oxide (rG-O) showed little or less enhancement of fracture toughness due to the degraded mechanical strength of rG-O and the structural defects of the G-O composites.

210 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the developments and applications of LDNs in bioactive ceramics, including the newly-developed fabrication methods for LDNs/ceramic composites, the reinforcing mechanisms and the in vitro and in vivo performance ofLDNs.

169 citations

Journal ArticleDOI
TL;DR: In this article, the authors systematically summarize the current preparation methods to achieve different types of architecture design in three classes of matrices (polymer, ceramic and metal) and analyze the mechanisms and the influence factors for the mechanical and physical properties of the composites with different architecture types.

133 citations

References
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
Changgu Lee1, Xiaoding Wei1, Jeffrey W. Kysar1, James Hone1, James Hone2 
18 Jul 2008-Science
TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Abstract: We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

18,008 citations

Journal ArticleDOI
TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Abstract: We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range ∼(4.84 ± 0.44) × 103 to (5.30 ± 0.48) × 103 W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.

11,878 citations

Journal ArticleDOI
20 Jul 2006-Nature
TL;DR: The bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Abstract: The remarkable mechanical properties of carbon nanotubes arise from the exceptional strength and stiffness of the atomically thin carbon sheets (graphene) from which they are formed. In contrast, bulk graphite, a polycrystalline material, has low fracture strength and tends to suffer failure either by delamination of graphene sheets or at grain boundaries between the crystals. Now Stankovich et al. have produced an inexpensive polymer-matrix composite by separating graphene sheets from graphite and chemically tuning them. The material contains dispersed graphene sheets and offers access to a broad range of useful thermal, electrical and mechanical properties. Individual sheets of graphene can be readily incorporated into a polymer matrix, giving rise to composite materials having potentially useful electronic properties. Graphene sheets—one-atom-thick two-dimensional layers of sp2-bonded carbon—are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (∼3,000 W m-1 K-1 and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects1,2,3; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties4,5,6,7,8. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene–graphene composite formed by this route exhibits a percolation threshold10 of ∼0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes11; at only 1 volume per cent, this composite has a conductivity of ∼0.1 S m-1, sufficient for many electrical applications12. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

11,866 citations

Journal ArticleDOI
TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Abstract: There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphene's exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.

8,919 citations