scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review

TL;DR: In this paper, the authors highlight the ongoing advances of hybrid double hydroxides-supported nanomaterials in various fields, including wastewater treatment, adsorption and separation of toxic gases from environment, environmental sensors and catalysts.
About: This article is published in Journal of Cleaner Production.The article was published on 2020-11-10. It has received 42 citations till now. The article focuses on the topics: MXenes & Carbon nanotube.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the PANI@Nd-LDH nanocomposite showed selective fluorescence detection and adsorption of hexavalent chromium Cr(VI) within a short period.

51 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical hierarchical structure of ZHS@M composites was proposed for improving the thermal management capacity of Epoxy Resin (EP) in order to dissipate heat for reducing the possibility of thermal disaster chain.

45 citations

Journal ArticleDOI
TL;DR: In this article , a central composite design based on the response surface methodology (RSM) was used to investigate the operating parameters and determine the optimal conditions for the removal of enrofloxacin (ENF) and Rhodamine B (RhB) by graphene oxide (GO).
Abstract: Abstract Pharmaceutical products and dyes are the main environmental pollutants in the effluent of textile, cosmetic, and pharmaceutical industries. Therefore, in this study, the central composite design (CCD) based on the response surface methodology (RSM) was used to investigate the operating parameters and determine the optimal conditions for the removal of enrofloxacin (ENF) and Rhodamine B (RhB) by graphene oxide (GO). The structure and morphology of GO were studied using scanning electron microscopes (SEM) and X-ray diffraction (XRD) techniques. Quadratic model was confirmed to describe each of the removal efficiency responses (%R) a with high correlation coefficient ( R 2 = 0.9987 for ENF and R 2 = 0.9999 for RhB) (R 2 -Adj = 0.9963 for ENF and R 2 -Adj = 0.9991 for RhB). In optimal conditions, RhB concentration of 10 mg L −1 , adsorbent amount of 0.24 g, sonication time of 23 min, ENF concentration of 10 mg L −1 , and pH 7, removal rates of more than 92.5% were obtained for both analytes. Adsorption equilibrium was studied with Langmuir, Freundlich, Langmuir-Freundlich, Redlich-Peterson, Toth and Khan isotherm models. Equilibrium data were best fitted with the Langmuir-Freundlich isotherm model. Maximum adsorption capacity of ENF and RhB on GO were 45.035 mg g −1 and 107.230 mg g −1 , respectively. The recyclability of GO was evaluated during the ENF and RhB adsorption process. The results showed that up to 4 cycles of adsorbent, the adsorption efficiency is reduced by a tiny amount. The present study showed that GO is highly effective in removing ENF and RhB from environmental water samples.

42 citations

Journal ArticleDOI
TL;DR: In this article , a hierarchical hierarchical structure of [email protected] composites was proposed to improve the thermal management capacity of Epoxy Resin (EP) composites for thermal management.

39 citations

Journal ArticleDOI
TL;DR: In this article , a review of the research progress on synthesis methods to prepare adsorption materials and modification strategies of different adsorbents, which enhance the specificity toward phosphate and accelerate the adsoreption rate of phosphate, is presented.

35 citations

References
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
10 Nov 2005-Nature
TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Abstract: When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron–hole degeneracy and vanishing carrier mass near the point of charge neutrality1,2. Indeed, a distinctive half-integer quantum Hall effect has been predicted3,4,5 theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction—a consequence of the exceptional topology of the graphene band structure6,7. Recent advances in micromechanical extraction and fabrication techniques for graphite structures8,9,10,11,12 now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.

11,122 citations

Journal Article
TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Abstract: When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron–hole degeneracy and vanishing carrier mass near the point of charge neutrality. Indeed, a distinctive half-integer quantum Hall effect has been predicted theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction—a consequence of the exceptional topology of the graphene band structure. Recent advances in micromechanical extraction and fabrication techniques for graphite structures now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.

10,112 citations