scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Green Concrete: Environment Friendly Solution

10 Aug 2021-International Journal of Digital Evidence (Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP)-pp 13-20
TL;DR: In this article, the importance of green concrete and its applications, advantages, and disadvantages are discussed, and the results are varying for different structures based on different types of concrete structures.
Abstract: Green concrete is a type of concrete. It is a sustainable material used for the construction of reinforced concrete structures. Green concrete is different compared to normal concrete. Nowadays, it plays a very good role in the construction of structures. It is subjected to very low energy consumption and low resource consumption. Green concrete is a very good material for sustainable development. Concrete is made from the replacement of substituent ingredients such as cement and aggregates. In this waste materials such as agricultural or industrial wastes are placed during manufacture to produce a new concrete. Green concrete is popular worldwide due to its extraordinary properties and applications. This paper mainly deals with the importance of green concrete and its applications, advantages, and disadvantages. The results are varying for based on different structures. So, we can get all characteristics and properties of concrete structures and know their strength.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the fracture mechanics parameters of new concrete composites based on quaternary blended cements (QBC) have been investigated and a composition of the two most commonly used mineral additives, i.e., fly ash (FA) and silica fume (SF), in combination with nanosilica (nS), has been proposed as a partial replacement for ordinary Portland cement (OPC) binder.
Abstract: This study presents test results and in-depth discussion regarding the measurement of the fracture mechanics parameters of new concrete composites based on quaternary blended cements (QBC). A composition of the two most commonly used mineral additives, i.e., fly ash (FA) and silica fume (SF), in combination with nanosilica (nS), has been proposed as a partial replacement for ordinary Portland cement (OPC) binder. Four series of concrete were made, one of which was the reference concrete (REF) and the remaining three were QBC. During the research, the main mechanical parameters of compressive strength (fcm) and splitting tensile strength (fctm), as well as fracture mechanics parameters and the critical stress intensity factor KIcS, along with critical crack-tip opening displacements (CTODc) were investigated. Based on the tests, it was found that the total addition of siliceous materials, i.e., SF + nS without FA, increases the strength and fracture parameters of concrete by approximately 40%. On the other hand, supplementing the composition of the binder with SF and nS with 5% of FA additive causes an increase in all mechanical parameters by approximately 10%, whereas an increase by another 10% in the FA content in the concrete mix causes a significant decrease in all the analyzed factors by 10%, compared to the composite with the addition of silica modifiers only.

53 citations

Journal ArticleDOI
31 Dec 2022-Energies
TL;DR: In this article , the authors investigated the effects of coal fly ash (CFA) on the mechanical parameters and microstructure of CFA cement concretes and found that the combined usage of nS and CFA has synergistic and positive effects on improving mechanical parameters.
Abstract: Disposal of the coal fly ash (CFA) generated from thermal power plants in huge quantities is one of the major concerns for the industry, as well as the natural environment. On the other hand, CFA can be used within a certain percentage range in the cement concrete mix as a replacement for cement. Nanomaterials can also be used to improve the properties of concrete. Therefore, this study investigated the effects of nanosilica (nS) on the mechanical parameters and microstructure of CFA cement concretes. This study utilized an nS content of 5%, along with three CFA contents, i.e., of 0, 15, and 25% by volume. Mechanical property tests and a thorough overview of changes in the structure of modified concrete were carried out to study the effect of the CFA content on the analyzed parameters of concrete containing nS. This study had the goal of elucidating the reinforcing mechanisms of CFA concrete by nS and providing design guidance for the practical engineering applications of CFA-nS composites. Based on the conducted studies, it was found that the combined usage of nS and CFA has synergistic and positive effects on improving mechanical parameters and microstructure in such concretes. The combined strengthening of a cement matrix by nS and CFA can fill the pores and microcracks in concrete composites and effectively improve the mechanical properties and microstructure of such materials. In this study, the optimal improvement was achieved when the concentration of additions was 5% nS and 15% CFA. The 28-day compressive strength and splitting tensile strength were increased by 37.68 and 36.21%, respectively, in comparison to control concrete. Tailored blended cements composed of nS and CFA content (up to 30% replacement level) can significantly improve the parameters of concrete composites, as well as reduce the carbon footprint of cement-based materials—constituting a step toward the production of eco-friendly concretes.

35 citations

Journal ArticleDOI
TL;DR: In this article , the chemical pozzolanic reaction takes place in cement composites containing the fly ash (FA) additive, and the development of phases in the structure of the cement paste in the initial period of its curing and after 28 days from its preparation.
Abstract: The following article introduces, in a thorough manner, how the chemical pozzolanic reaction takes place in cement composites containing the fly ash (FA) additive. In the research part, however, the development of phases in the structure of the cement paste in the initial period of its curing and after 28 days from its preparation was traced. For this purpose, a Scanning Electron Microscope (SEM) was used. In order to accurately highlight all the characteristic stages of the formation of the structure of the composite containing FA, an analysis of the cement matrix was carried out between 0.5 and 28 days of their curing. Microstructural studies were complemented by tests of pozzolanic activity of FAs used. In order to conduct a full analysis of this feature, experiments were carried out using two types of research methods, i.e., chemical and physical. On the basis on the conducted studies it was found that: in cement composites with the addition of FA, in the period until the third day of curing, the development of the material structure is mainly the result of the hydration reaction, and between the seventh and fourteenth day after sample preparation, the first signs of the pozzolanic reaction on FA grains are visible; however, in the period between 14 and 28 days, there is a clear homogenization of the structure of the cement composite with the addition of FA, resulting from the change of disordered phases into compact and homogeneous forms and filling in the composite of porous places with pozzolanic reaction products. The use of cement composites based on materials whose application makes it possible to reduce GHG emissions to the atmosphere, reduce energy consumption, and reduce industrial waste landfills leads towards the development of ecological and sustainable building engineering.

14 citations

TL;DR: In this paper , a study of the combined effect of siliceous fly ash (FA), silica fume (SF), and nanosilica (nS) on the cement matrix morphology and size of microcracks occurring in the Interfacial Transition Zone (ITZ) between the coarse aggregate and the cement paste of concrete composites based on ordinary Portland cement (OPC).
Abstract: This article is devoted to the study of the combined effect of siliceous fly ash (FA), silica fume (SF), and nanosilica (nS) on the cement matrix morphology and size of microcracks occurring in the Interfacial Transition Zone (ITZ) between the coarse aggregate and the cement paste of concrete composites based on ordinary Portland cement (OPC). The manuscript contains analyses of width of microcracks (Wc) occurring in the ITZ area of concretes based on quaternary blended cements and changes in ITZ morphology in the concretes in question. Experiments were planned for four types of concrete. Three of them were composites based on quaternary blended cements (QBC), while the fourth was reference concrete (REF). Based on the observations of the matrices of individual composites, it was found that the REF concrete was characterized by the most heterogeneous structure. However, substitution of part of the cement binder with active pozzolanic additives resulted in a more compact and homogenous structure of the cement matrix in each of the QBC series concretes. Moreover, when analyzing the average Wc values, it should be stated that the modification of the basic structure of the cement matrix present in the REF concrete resulted in a significant reduction of the analyzed parameter in all concretes of the QBC series. For QBC-1, QBC-2, and QBC-3, the Wc values were 0.70 μm, 0.59 μm, and 0.79 μm, respectively, indicating a decrease of 38%, almost 48%, and 30%, respectively, compared with the working condition of concrete without additives. On the basis of the above results, it can therefore be concluded that the proposed modification of the binder composition in the analyzed materials clearly leads to homogenization of the composite structure and limitation of initial internal damages in concrete.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, the potential position of and drivers for inorganic polymers (“geopolymers”) as an element of the push for a sustainable concrete industry are discussed.

1,444 citations

Journal ArticleDOI
TL;DR: The increasing demand for green concrete has been spurred by demand for high quality concrete products, desire of nations to reduce green-house gas emission, need for conservation of natural resources and limited landfill spaces as mentioned in this paper.

221 citations

Journal ArticleDOI
TL;DR: In this article, the authors have discussed several efforts that have been done so far in implementing the concept of green concrete and material development of nanosilica in Indonesia and discussed problems in the realization of and potential barriers to green concrete as well as political scenarios that has been adopted by several countries through implementation of various priorities and deregulation in various fields.

216 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of ternary and quaternary-RHA blend concrete mixes in terms of their durability, mechanical properties, and global warming potential (GWP) and criteria air pollutants was analyzed.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a review on the utilization of emerging alternative farming waste materials in concrete such as from the farming of bamboo, corn, wheat, olive, sisal, seashells and more is carried out with the aim of examining the benefits and shortcomings of using these materials.

161 citations

Trending Questions (2)
What are concrete environmental advantages of green transition?

Green concrete offers environmental advantages such as reduced energy and resource consumption, lower carbon dioxide emissions, and utilization of waste materials, making it an eco-friendly solution for construction.

What is green tourisam?

The provided paper does not mention anything about green tourism.