scispace - formally typeset
Open AccessJournal ArticleDOI

Greenhouse gas mitigation in agriculture

Reads0
Chats0
TLDR
In this article, the economic potential of agricultural practices, such as water and rice management, set-aside, land use change and agroforestry, livestock management and manure management, is estimated.
Abstract
Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500–6000 Mt CO2-eq. yr−1, with economic potentials of approximately 1500–1600, 2500–2700 and 4000–4300 Mt CO2-eq. yr−1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.−1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000 Mt CO2-eq. yr−1 at 0–20, 0–50 and 0–100 US$ t CO2-eq.−1, respectively.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Livestock production: recent trends, future prospects

TL;DR: Demand for livestock products in the future could be heavily moderated by socio-economic factors such as human health concerns and changing socio-cultural values, and Livestock production is likely to be increasingly affected by carbon constraints and environmental and animal welfare legislation.
Journal ArticleDOI

Ecosystem services and agriculture: tradeoffs and synergies.

TL;DR: The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility, and the potential for ‘win–win’ scenarios increases.
Journal ArticleDOI

Climate Change and Food Systems

TL;DR: In this paper, the impacts of global climate change on food systems are expected to be widespread, complex, geographically and temporally variable, and profoundly influenced by socioeconomic conditions, and some synergies among food security, adaptati...
Journal ArticleDOI

Agricultural sustainability: concepts, principles and evidence

TL;DR: Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign.
Journal ArticleDOI

Climate-smart soils

TL;DR: ‘state of the art’ soil greenhouse gas research is highlighted, mitigation practices and potentials are summarized, gaps in data and understanding are identified and ways to close such gaps are suggested through new research, technology and collaboration.
References
More filters
Journal ArticleDOI

Soil carbon sequestration impacts on global climate change and food security.

TL;DR: In this article, the carbon sink capacity of the world’s agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon.
Journal ArticleDOI

Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change

David John Griggs, +1 more
- 01 Aug 2002 - 
TL;DR: The terms of reference of the Intergovernmental Panel on Climate Change (IPCC) as discussed by the authors were defined by the World Meteorological Organization (WMO) and the United Nations Environmental Programme (UNEP).
Journal ArticleDOI

Emission of trace gases and aerosols from biomass burning

TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Journal ArticleDOI

Soil carbon stocks and land use change: a meta analysis

TL;DR: In this article, the influence of land use changes on soil carbon stocks was reviewed and a meta-analysis of these data from 74 publications was conducted, which indicated that soil C stocks decline after land use change from pasture to plantation (−10%), native forest to plantations (−13), native forests to crop (−42), and pasture to crop (+59%), while the reverse process usually increased soil carbon and vice versa.
Related Papers (5)