scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GROMACS: A message-passing parallel molecular dynamics implementation

02 Sep 1995-Computer Physics Communications (ELSEVIER SCIENCE BV)-Vol. 91, Iss: 1, pp 43-56
TL;DR: A parallel message-passing implementation of a molecular dynamics program that is useful for bio(macro)molecules in aqueous environment is described and can handle rectangular periodic boundary conditions with temperature and pressure scaling.
About: This article is published in Computer Physics Communications.The article was published on 1995-09-02. It has received 8195 citations till now. The article focuses on the topics: Force field (chemistry).
Citations
More filters
Journal ArticleDOI
TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu.

14,558 citations


Cites background from "GROMACS: A message-passing parallel..."

  • ...The determination of these parameters is a significant undertaking generally accomplished through a combination of empirical techniques and quantum mechanical calculations [7,8,9]; the force field is then tested for fidelity in reproducing the structural, dynamic, and thermodynamic properties of small molecules that have been well-characterized experimentally, as well as for fidelity in reproducing bulk properties....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s is described, which is a very fast program for molecular dynamics simulation.
Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simulations. The package includes about 100 utility and analysis programs. GROMACS is in the public domain and distributed (with source code and documentation) under the GNU General Public License. It is maintained by a group of developers from the Universities of Groningen, Uppsala, and Stockholm, and the Max Planck Institute for Polymer Research in Mainz. Its Web site is http://www.gromacs.org.

13,116 citations

Journal ArticleDOI
TL;DR: GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules, and provides a rich set of calculation types.

12,985 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations

Book
01 Jan 1966
TL;DR: In this paper, a simulation program for particle-mesh force calculation is presented, based on a one-dimensional plasma model and a collisionless particle model, which is used to simulate collisionless particle models.
Abstract: Computer experiments using particle models A one-dimensional plasma model The simulation program Time integration schemes The particle-mesh force calculation The solution of field equations Collisionless particle models Particle-particle/particle-mesh algorithms Plasma simulation Semiconductor device simulation Astrophysics Solids, liquids and phase changes Fourier transforms Fourier series and finite Fourier transforms Bibliography Index

6,376 citations

Journal ArticleDOI
TL;DR: A complete set of intermolecular potential functions has been developed for use in computer simulations of proteins in their native environment and they have been parametrized directly to reproduce experimental thermodynamic and structural data on fluids.
Abstract: A complete set of intermolecular potential functions has been developed for use in computer simulations of proteins in their native environment. Parameters are reported for 25 peptide residues as well as the common neutral and charged terminal groups. The potential functions have the simple Coulomb plus Lennard-Jones form and are compatible with the widely used models for water, TIP4P, TIP3P, and SPC. The parameters were obtained and tested primarily in conjunction with Monte Carlo statistical mechanics simulations of 36 pure organic liquids and numerous aqueous solutions of organic ions representative of subunits in the side chains and backbones of proteins. Bond stretch, angle bend, and torsional terms have been adopted from the AMBER united-atom force field. As reported here, further testing has involved studies of conformational energy surfaces and optimizations of the crystal structures for four cyclic hexapeptides and a cyclic pentapeptide. The average root-mean-square deviation from the X-ray structures of the crystals is only 0.17 A for the atomic positions and 3% for the unit cell volumes. A more critical test was then provided by performing energy minimizations for the complete crystal of the protein crambin, including 182 water molecules that were initially placed via a Monte Carlo simulation. The resultant root-mean-square deviation for the non-hydrogen atoms is still ca. 0.2 A and the variation in the errors for charged, polar, and nonpolar residues is small. Improvement is apparent over the AMBER united-atom force field which has previously been demonstrated to be superior to many alternatives. Computer simulations are undoubtedly destined to became an increasingly important means for investigating the structures and dynamics of biomolecular systems.' At the heart of such theoretical calculations are the force fields that describe the interatomic interactions and the mechanics of deformations of the molecules.* There is also little doubt that there will be a continual evolution in force fields with added complexity and improved performance paralleling the availability of computer resources. Our own efforts in this area over the last few years have resulted in the OPLS potential functions for proteins whose development and performance are summarized here. These potential functions have a simple form and they have been parametrized directly to reproduce experimental thermodynamic and structural data on fluids. Consequently, they are computationally efficient and their description of proteins in solution or crystalline environments should be superior to many alterantives that have been developed with limited condensed-phase data. The latter point is pursued here primarily through calculations on the crystal structures for four cyclic hexapeptides, a cyclic pentapeptide, and the protein crambin. Improvements are apparent in comparison to the AMBER united-atom force field3 which has previously been shown to be superior to many alternative^.^ (1) Beveridge, D. L., Jorgensen, W. L., Eds. Ann. N.Y. Acad. Sci. 1986, 482. ( 2 ) For reviews, see: (a) Levitt, M. Annu. Reu. Biophys. Eioeng. 1982, 11, 251. (b) McCammon, J. A. Rep. Prog. Phys. 1984, 47, 1. (3) Weiner, S. J.; Kollman, P. A.; Case, D. A,; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. SOC. 1984, 106, 765. Parametrization The peptide residues of proteins contain readily identifiable organic subunits such as amides, hydrocarbons, alcohols, thioethers, etc. In view of this and since data are available on the corresponding pure organic liquids, our approach to developing a force field for proteins was to build it up from parameters demonstrated to yield good descriptions of organic liquids. U1timately, the force field would need to treat both intramolecular terms for bond stretches, angle bends, and torsions, as well as the intermolecular and intramolecular nonbonded interactions. The latter are generally accepted to be the most difficult part of the problem and have been our focus.3 A simple, computationally efficient form was chosen to represent the nonbonded interactions through Coulomb and Lennard-Jones terms interacting between sites centered on nuclei (eq 1). Thus, the intermolecular inter-

4,328 citations

01 Jan 1981
TL;DR: Computer experiments using particle models A one-dimensional plasma model The simulation program Time integration schemes The particle-mesh force calculation The solution of field equations Collisionless particle models Particle-particles/particle/particles algorithms Plasma simulation Semiconductor device simulation Astrophysics
Abstract: Computer experiments using particle models A one-dimensional plasma model The simulation program Time integration schemes The particle-mesh force calculation The solution of field equations Collisionless particle models Particle-particle/particle-mesh algorithms Plasma simulation Semiconductor device simulation Astrophysics Solids, liquids and phase changes Fourier transforms Fourier series and finite Fourier transforms Bibliography Index

1,722 citations

Journal ArticleDOI
TL;DR: In this paper, the main contributions of microscopic consideration can offer are (1) the understanding and interpretation of experimental results, (2) semiquantitative estimates of experimental result, and (3) the capability to interpolate or extrapolate experimental data into regions that are only difficultly accessible in the laboratory.
Abstract: During recent decades it has become feasible to simulate the dynamics of molecular systems on a computer. The method of molecular dynamics (MD) solves Newton's equations of motion for a molecular system, which results in trajectories for all atoms in the system. From these atomic trajectories a variety of properties can be calculated. The aim of computer simulations of molecular systems is to compute macroscopic behavior from microscopic interactions. The main contributions a microscopic consideration can offer are (1) the understanding and (2) interpretation of experimental results, (3) semiquantitative estimates of experimental results, and (4) the capability to interpolate or extrapolate experimental data into regions that are only difficultly accessible in the laboratory. One of the two basic problems in the field of molecular modeling and simulation is how to efficiently search the vast configuration space which is spanned by all possible molecular conformations for the global low (free) energy regions which will be populated by a molecular system in thermal equilibrium. The other basic problem is the derivation of a sufficiently accurate interaction energy function or force field for the molecular system of interest. An important part of the art of computer simulation is to choose the unavoidable assumptions, approximations and simplifications of the molecular model and computational procedure such that their contributions to the overall inaccuracy are of comparable size, without affecting significantly the property of interest. Methodology and some practical applications of computer simulation in the field of (bio)chemistry will be reviewed.

1,443 citations