scispace - formally typeset
Search or ask a question
Reference EntryDOI

Growing and analyzing static biofilms

TL;DR: In this article, the early stages of biofilm formation are examined using static biofilm assays, which are suitable for either small or relatively large-scale studies and can be used individually or in combination for the study of biofilms.
Abstract: Many bacteria can exist as surface-attached aggregations known as biofilms. Presented in this unit are several approaches for the study of these communities. The focus here is on static biofilm systems, which are particularly useful for examination of the early stages of biofilm formation, including initial adherence to the surface and microcolony formation. Furthermore, most of the techniques presented are easily adapted to the study of biofilms under a variety of conditions and are suitable for either small- or relatively large-scale studies. Unlike assays involving continuous-flow systems, the static biofilm assays described here require very little specialized equipment and are relatively simple to execute. In addition, these static biofilm systems allow analysis of biofilm formation with a variety of readouts, including microscopy of live cells, macroscopic visualization of stained bacteria, and viability counts. Used individually or in combination, these assays provide useful means for the study of biofilms.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It was shown that the ability of Cms to form biofilms during plant infection is significantly inhibited upon the combined cultivation of it with the plant cells exerting the responses of the effector-activated immunity and represented by the cells of tobacco and resistant potato variety.
Abstract: Generation of reactive oxygen species (ROS) in tobacco (Nicotiana tabacum L.) cell cultures and potato (Solanum tuberosum L.) of two varieties experiencing the action of bacterial pathogen Clavibacter michiganensis ssp. sepedonicus (Cms) was investigated. The intensity and dynamics of the changes in hydrogen peroxide concentration observed in these cultures provided evidence for the development in tobacco of the effector-activated immune responses and the induction of the same type of responses but with low intensity for resistant potato variety and the inhibition of the defense mechanisms for its susceptible variety. This is in accordance with the data concerning the dynamics of plant cell culture death as well as the results obtained earlier on the whole plants. The experiments performed had also the purpose to elucidate whether the development of the above responses on the ability of bacteria Cms to form biofilms during plant infection. It was shown that this ability of Cms is significantly inhibited upon the combined cultivation of it with the plant cells exerting the responses of the effector-activated immunity and represented by the cells of tobacco and resistant potato variety. In the case of susceptible potato variety, the process of the biofilm formation was suppressed by the plant only to a slight extent. In addition, the fact concerning the participation of heat shock proteins (HSPs) in the development of the effector-activated immune responses was revealed.

7 citations


Cites methods from "Growing and analyzing static biofil..."

  • ...To quantify the formation of biofilms, the method of static cultivation of microorganisms in 96-hole plastic tablet was applied wherein the formed biofilms were stained with gentian violet dye [13]....

    [...]

Dissertation
17 Dec 2012
TL;DR: The potential of probiotics to protect skin from pathogenic bacteria was assessed using primary keratinocytes as a model system, and the skin pathogen, Staphylococcus aureus and L. reuteri protected NHEK from the toxic effects of S. aUREus.
Abstract: Probiotics have been defined as ?live microorganisms which when administered in adequate amounts confer a health benefit on the host?. The beneficial effects of probiotics in the gut are well described and roles including immunomodulation and colonisation resistance have been documented. Recent reports suggest that topical use of probiotic bacteria may be an effective strategy to promote skin health or inhibit disease. Therefore, in this thesis the potential of probiotics to protect skin from pathogenic bacteria was assessed using primary keratinocytes as a model system, and the skin pathogen, Staphylococcus aureus. The ability of three probiotics, L. reuteri ATCC 55730, L. rhamnosus AC413 and L. salivarius UCC118 to inhibit the growth of S. aureus was tested using well-diffusion assays and spot on the lawn assays. All three probiotics inhibited the growth of S. aureus in well-diffusion assays, though this property was dependent on growth medium. Inhibition of S. aureus growth was principally via the production of organic acids rather than bacteriocin production. Next, to determine whether probiotics could protect keratinocytes, confluent normal human epidermal keratinocytes (NHEK) were infected with S. aureus (106 CFU/ml) in the presence or absence of the probiotic (108 CFU/ml). NHEK viability was measured using trypan blue exclusion assays. L. reuteri had a significant protective effect on NHEK when applied 1h prior to (P=0.0003), or simultaneously with S. aureus (P=0.002). L. reuteri did not however protect NHEK when applied 1h after S. aureus addition. There was no change in the number of viable S. aureus in cell culture assays. To determine whether the protective effect was due to the inhibition of adhesion, NHEK were either pre-exposed to the probiotic for 1h, simultaneously exposed to the probiotic and S. aureus for 1h, or exposed to the probiotic 30 minutes after S. aureus addition for 1h. Pre-exposure of NHEK to L. reuteri (exclusion) and simultaneous exposure to L. reuteri and S. aureus (competition) resulted in significantly less staphylococci adhering to NHEK (P=0.03 and P=0.008 respectively). However when L. reuteri was added after S. aureus (displacement), the number of adherent staphylococci was not reduced. The necessity of S. aureus adherence for the inactivation of NHEK was demonstrated using a ?5?1 integrin blocking antibody. Finally, to compare the innate response of NHEK to probiotics with S. capitis and S. aureus, TLR-2, antimicrobial peptide (AMP) expression and IL-8 production were measured. TLR-2 protein (but not mRNA) expression was reduced in the presence of S. aureus (P=0.018). NHEK pre-exposed to S. capitis prior to S. aureus infection however, exhibited elevated TLR-2 protein and mRNA expression (P<0.0001 and P=0.009 respectively). NHEK pre-exposed to L. reuteri prior to S. aureus had no significant change in TLR-2 expression compared to untreated controls. ELISAs demonstrated that IL-8 production was significantly increased in NHEK pre-exposed to L. reuteri prior to S. aureus infection (P=0.0001). In conclusion, L. reuteri protected NHEK from the toxic effects of S. aureus at least partly through competitive exclusion of binding sites on NHEK. Finally, NHEK innate responses to probiotic bacteria were akin to those to the skin commensal, S. capitis. L. reuteri induced expression of a neutrophil chemoattractant, suggesting it could be of importance in priming the innate immune response against S. aureus infections. Taken together, these results suggest that probiotic bacteria could be used prophylactically within skin creams and soaps to prevent S. aureus colonisation and infection in skin.

7 citations

Journal ArticleDOI
TL;DR: The antimicrobial activity of the aforementioned amidodithiophosphonates against a set of Gram-positive and Gram-negative pathogen bacteria was evaluated, and [Ni(BzNH-adtp)2] and [NDT) showed antiproliferative activity towards Staphylococcus aureus and Staphyllococcus haemolyticus strains.
Abstract: The reactions of 2,4-bis(4-methoxyphenyl)-1,3-dithio-2,4-diphosphetane-2,4-disulfide (Lawesson’s Reagent, LR) with benzylamine (BzNH2) and 4-phenylbutylamine (PhBuNH2) yield benzylammonium P-(4-methoxyphenyl)-N-benzyl-amidodithiophosphonate (BzNH3)(BzNH-adtp) and 4-phenylbutylammonium P-(4-methoxyphenyl)-N-(4-phenylbutyl)-amidodithiophosphonate (PhBuNH3)(PhBuNH-adtp). The relevant nickel complexes [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] and the corresponding hydrolysed derivatives (BzNH3)2[Ni(dtp)2] and (PhBuNH3)2[Ni(dtp)2] were prepared and fully characterized. The antimicrobial activity of the aforementioned amidodithiophosphonates against a set of Gram-positive and Gram-negative pathogen bacteria was evaluated, and [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] showed antiproliferative activity towards Staphylococcus aureus and Staphylococcus haemolyticus strains. density functional theory (DFT) calculations were performed to shed some light on the activity of reported compounds related to their tendency towards P–N bond cleavage.

7 citations


Cites methods from "Growing and analyzing static biofil..."

  • ...For the biofilm evaluation, we used the protocol described by Montana University’s Center for Biofilm Engineering [69]....

    [...]

Journal ArticleDOI
TL;DR: In this paper , the authors examined the dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization.
Abstract: Dual species interactions in co-isolated pairs of Staphylococcus aureus and Pseudomonas aeruginosa from patients with tracheobronchitis or bronchial colonization were examined. The genetic and phenotypic diversity between the isolates was high making the interactions detected strain-specific. Despite this, and the clinical origin of the strains, some interactions were common between some co-isolated pairs. For most pairs, P. aeruginosa exoproducts affected biofilm formation and reduced growth in vitro in its S. aureus counterpart. Conversely, S. aureus did not impair biofilm formation and stimulated swarming motility in P. aeruginosa. Co-culture in a medium that mimics respiratory mucus promoted coexistence and favored mixed microcolony formation within biofilms. Under these conditions, key genes controlled by quorum sensing were differentially regulated in both species in an isolate-dependent manner. Finally, co-infection in the acute infection model in Galleria mellonella larvae showed an additive effect only in the co-isolated pair in which P. aeruginosa affected less S. aureus growth. This work contributes to understanding the complex interspecies interactions between P. aeruginosa and S. aureus by studying strains isolated during acute infection.

6 citations

Journal ArticleDOI
TL;DR: The results suggest that biofilm biomass, extracellular polysaccharide, and adhesion force were higher in the presence of calcium palmitate.
Abstract: Calcium palmitate and magnesium palmitate (which are major constituents of waste water) are insoluble precipitates that accumulate in bodies of water. This leads to the formation of biofilms because bacterial cells can use these fatty acid salts as a carbon source. It is important to study the formation of biofilms because they cause corrosion of pipelines and water contamination. In this study, the effect of calcium palmitate and magnesium palmitate on Pseudomonas aeruginosa biofilm formation has been evaluated. In the presence of calcium palmitate, the biofilm biomass, extracellular polysaccharide, and adhesion force were 3.45 ± 0.06 (A590), 1810 ± 47 μg, and 14.5 ± 0.9 nN, respectively. In the presence of magnesium palmitate, the biofilm biomass, extracellular polysaccharide, and adhesion force were 2.72 ± 0.03 (A590), 1370 ± 56 μg, and 8.0 ± 0.2 nN, respectively. The results suggest that biofilm biomass, extracellular polysaccharide, and adhesion force were higher in the presence of calcium palmitate.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: The optical densities of stained bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections.
Abstract: The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images

1,980 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]

Journal ArticleDOI
TL;DR: Results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
Abstract: The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 μg of tobramycin ml−1or 1.0 μg of ciprofloxacin ml−1. After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 ± 0.18 for tobramycin and 1.42 ± 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 μm into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.

918 citations

Journal ArticleDOI
TL;DR: The results suggest that some other resistance mechanism is involved for both agents and contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin.
Abstract: The penetration of two antibiotics, ampicillin and ciprofloxacin, through biofilms developed in an in vitro model system was investigated. The susceptibilities of biofilms and corresponding freely suspended bacteria to killing by the antibiotics were also measured. Biofilms of Klebsiella pneumoniae were developed on microporous membranes resting on agar nutrient medium. The susceptibilities of planktonic cultures and biofilms to 10 times the MIC were determined. Antibiotic penetration through biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to an overlying filter disk. Parallel experiments were performed with a mutant K. pneumoniae strain in which beta-lactamase activity was eliminated. For wild-type K. pneumoniae grown in suspension culture, ampicillin and ciprofloxacin MICs were 500 and 0.18 microgram/ml, respectively. The log reductions in the number of CFU of planktonic wild-type bacteria after 4 h of treatment at 10 times the MIC were 4.43 +/- 0.33 and 4.14 +/- 0.33 for ampicillin and ciprofloxacin, respectively. Biofilms of the same strain were much less susceptible, yielding log reductions in the number of CFU of -0.06 +/- 0.06 and 1.02 +/- 0.04 for ampicillin and ciprofloxacin, respectively, for the same treatment. The number of CFU in the biofilms after 24 h of antibiotic exposure was not statistically different from the number after 4 h of treatment. Ampicillin did not penetrate wild-type K. pneumoniae biofilms, whereas ciprofloxacin and a nonreactive tracer (chloride ion) penetrated the biofilms quickly. The concentration of ciprofloxacin reached the MIC throughout the biofilm within 20 min. Ampicillin penetrated biofilms formed by a beta-lactamase-deficient mutant. However, the biofilms formed by this mutant were resistant to ampicillin treatment, exhibiting a 0.18 +/- 0.07 log reduction in the number of CFU after 4 h of exposure and a 1.64 +/- 0.33 log reduction in the number of CFU after 24 h of exposure. Poor penetration contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin. The increased resistance of the wild-type strain to ciprofloxacin and the mutant strain to ampicillin and ciprofloxacin could not be accounted for by antibiotic inactivation or slow diffusion since these antibiotics fully penetrated the biofilms. These results suggest that some other resistance mechanism is involved for both agents.

885 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...Colony biofilms Colony biofilms (see Basic Protocol 3) have typically been used for the purpose of determining antibiotic resistance (Anderl et al., 2000; Walters et al., 2003)....

    [...]

Book ChapterDOI
TL;DR: This article operationally defines a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.
Abstract: Interest in the study of microbial biofilms has increased greatly in recent years due in large part to the profound impact biofilms have in clinical, industrial, and natural settings. Traditionally, the study of biofilms has been approached from an ecological or engineering perspective, using a combination of classical microbiology and advanced microscopy. We and others have begun to use genetic approaches to understand the development of these complex communities. To begin we must answer the question: What is a biofilm? This definition, by necessity, may be quite broad because it is clear that many organisms can attach to a variety of surfaces under diverse environmental conditions. Therefore, in the context of this article we will operationally define a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.

820 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the mutants were impaired in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.
Abstract: The primary attachment to polymer surfaces followed by accumulation in multilayered cell clusters leads to production of Staphylococcus epidermidis biofilms, which are thought to contribute to virulence in biomaterial-related infections. We isolated Tn917 transposon mutants of biofilm-producing S. epidermidis 13-1, which were completely biofilm negative. In pulsed-field gel electrophoresis no obvious deletions of the mutants were noted. The Tn917 insertions of mutants M10 and M11 were located on different EcoRI fragments but on identical 60-kb SmaI and 17-kb BamHI chromosomal fragments. Linkage of transposon insertions of mutants M10 and M11 with the altered phenotype was demonstrated by phage transduction, whereas the several other mutants apparently represented spontaneous variants. In a primary attachment assay with polystyrene spheres, no significant difference between any of the mutants and the wild type could be detected. Cell clustering as an indication of intercellular adhesion, which is a prerequisite for accumulation in multilayered cell clusters, was not detected with any mutant. These results demonstrate that the mutants were impaired in the accumulative phase of biofilm production. Mutants M10 and M11 did not produce detectable amounts of a specific polysaccharide antigen (D. Mack, N. Siemssen, and R. Laufs, Infect. Immun. 60:2048-2057, 1992), whereas substantially reduced amounts of antigen were produced by the spontaneous variants. Hexosamine was determined as the major specific component of the antigen enriched by gel filtration of biofilm-producing S. epidermidis 1457 because almost no hexosamine was detected in material prepared from the isogenic biofilm-negative transductant 1457-M11, which differentiates the antigen from other S. epidermidis polysaccharide components. Our results provide direct genetic evidence for a function of the antigen in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.

343 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]