scispace - formally typeset
Search or ask a question
Reference EntryDOI

Growing and analyzing static biofilms

TL;DR: In this article, the early stages of biofilm formation are examined using static biofilm assays, which are suitable for either small or relatively large-scale studies and can be used individually or in combination for the study of biofilms.
Abstract: Many bacteria can exist as surface-attached aggregations known as biofilms. Presented in this unit are several approaches for the study of these communities. The focus here is on static biofilm systems, which are particularly useful for examination of the early stages of biofilm formation, including initial adherence to the surface and microcolony formation. Furthermore, most of the techniques presented are easily adapted to the study of biofilms under a variety of conditions and are suitable for either small- or relatively large-scale studies. Unlike assays involving continuous-flow systems, the static biofilm assays described here require very little specialized equipment and are relatively simple to execute. In addition, these static biofilm systems allow analysis of biofilm formation with a variety of readouts, including microscopy of live cells, macroscopic visualization of stained bacteria, and viability counts. Used individually or in combination, these assays provide useful means for the study of biofilms.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper characterized type VI secretion system (T6SS) in 248 Klebsiella pneumoniae isolates with all kinds of specimens from a Chinese hospital and investigated the potential association of T6SS with virulence and drug resistance.

5 citations

Journal ArticleDOI

5 citations


Cites background from "Growing and analyzing static biofil..."

  • ...The shape of the microbial community could only be recognized at higher magnification, like 10, 5, or 2 μm.(41,59) Therefore, the area marked with a red rectangular box in Figure 6G was selected for indepth analysis, and SEM images with a magnification of 10 μm and 2 μm were captured at that location....

    [...]

Journal ArticleDOI
TL;DR: The overall results obtained indicate that the riboflavin-overproducing Lactiplantibacillus plantarum strains studied have probiotic characteristics of interest for the development of functional foods.
Abstract: Riboflavin, vitamin B2, is essential for humans and has to be obtained from the diet. Some lactic acid bacteria (LAB) produce this vitamin, and they can be used for in-situ fortification of foods. This could be an alternative to supplementation with chemically synthesized vitamin, to palliate riboflavin deficiencies in specific groups of people. Moreover, if the producing LAB could survive in the gastrointestinal stress (GIT) they could be added as probiotics in this environment. In the present study we tested two riboflavin-overproducing Lactiplantibacillus plantarum strains (M5MA1-B2 and M9MG6-B2), spontaneous mutants of LAB isolated from chicha, a traditional Andean beverage. These two LAB, and also their isogenic strains M5MA1-B2[pRCR12] and M9MG6-B2[pRCR12], expressing the mCherry protein from the pRCR12 plasmid, were evaluated in vitro under simulated GIT conditions. Among other, specifically developed protein fluorescence assays were used. The four LAB showed similar levels of adhesion (>6.0%) to Caco-2 cells, higher than that of the probiotic Lacticaseibacillus rhamnosus GG strain (4.51%). Thus, LAB biofilm formation was assessed in the labeled cells by intracellular mCherry fluorescence and in the unlabeled parental strains by crystal violet staining. Both methods detected the formation of consistent biofilms by the L. plantarum strains. The quantification of mCherry fluorescence was also used to analyze LAB auto-aggregation properties. High levels of auto-aggregation were detected for both M5MA1-B2[pRCR12] and M9MG6-B2[pRCR12]. Survival of LAB included in a commercial cereal-based food matrix (Incaparina) under GIT conditions was also evaluated. The four LAB were resistant in vitro to the stomach and intestinal stresses, and proliferated in this environment, indicating a protective and nutritional effect of the Incaparina on the bacteria. Also, M9MG6-B2 survival in the presence or absence of Incaparina was evaluated in vivo in a BALB/c mouse model. The administration of the M9MG6-B2 strain alone or together with Incaparina had no adverse effect on the health, growth and/or well-being of the rodents. In addition, an increment in the villus length/crypt depth ratio was observed. The overall results obtained indicate that the LAB studied have probiotic characteristics of interest for the development of functional foods.

5 citations

Journal ArticleDOI
TL;DR: The multifunctional capabilities of the microbial-derived proteins identified in this study suggest potentially important roles as alternative treatments for biofilm-associated infections and cancer.
Abstract: The incidence of cancer is increasing worldwide; likewise, the emergence of antibiotic-resistant biofilm-forming pathogens has led to a tremendous increase in morbidity and mortality. This study aimed to evaluate the probiotic properties of bacteriocin-producing Enterococcus sp. with a focus on their anti-biofilm and anticancer activities. Three of 79 Enterococcus isolates (FM43, FM65, FM50) were identified as producers of broad-spectrum bioactive molecules and were molecularly characterized as Enterococcus faecium by 16S rRNA sequencing. Phenotypic and genotypic screening for potential virulence factors revealed no factors known to promote pathogenicity. Treatment with proteinase K resulted in diminished antimicrobial activity; PCR-based screening for bacteriocin genes suggested the presence of both entA and entB genes that encode enterocins A and B, respectively. Maximum antimicrobial activity was detected during the early stationary phase, while activity disappeared after 24 h in culture. Bacteriocins from these isolates were stable at high temperatures and over a wide range of pH. Interestingly, crude supernatants of Ent. faecium FM43 and Ent. faecium FM50 resulted in significant destruction (80% and 48%, respectively; P < 0.05) of Streptococcus mutans ATCC 25175–associated preformed biofilms. Moreover, in vitro cytotoxicity assays revealed that extracts from Ent. faecium isolates FM43, FM65, and FM50 inhibited Caco-2 cell proliferation by 76.9%, 70%, and 85.3%, respectively. Taken together, the multifunctional capabilities of the microbial-derived proteins identified in our study suggest potentially important roles as alternative treatments for biofilm-associated infections and cancer.

5 citations

Journal ArticleDOI
21 Jan 2022-Plants
TL;DR: S. hillii leaves are comprised of bioactive compounds that are bactericidal against several Gram-positive and Gram-negative bacteria, affecting individuals regardless of age.
Abstract: (1) Background: Rapidly increasing antibiotic resistance is one of the greatest threats to global health, affecting individuals regardless of age. Medicinal plants are widely used in traditional medicine to prevent and attenuate infectious conditions with minimal adverse effects. However, only a few have been phytochemically investigated for their medicinal properties and subsequent biological activities. Syncarpia hillii, a plant traditionally used by Indigenous Australians to treat sores, wounds, and skin infections, is no exception. (2) Methods: Primary extracts obtained from mature S. hillii leaves were evaluated for their antibacterial potential against 19 bacterial strains. The methanol extract was subjected to compound isolation and identification due to its preliminary bactericidal efficacy. (3) Results: Staphylococcal species were the most susceptible bacterial strain with a MIC value of 0.63 mg/mL to the S. hillii methanol extract. Quercetin-3-O-β-D-glucuronide and shikimic acid isolated from S. hillii methanol leaf extracts exhibited enhanced antibacterial effects against the tested bacteria with quercetin-3-O-β-D-glucuronide eliciting a MIC value of 0.78 µg/mL against E. faecalis. (4) Conclusions: S. hillii leaves are comprised of bioactive compounds that are bactericidal against several Gram-positive and Gram-negative bacteria.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: The optical densities of stained bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections.
Abstract: The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images

1,980 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]

Journal ArticleDOI
TL;DR: Results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
Abstract: The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 μg of tobramycin ml−1or 1.0 μg of ciprofloxacin ml−1. After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 ± 0.18 for tobramycin and 1.42 ± 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 μm into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.

918 citations

Journal ArticleDOI
TL;DR: The results suggest that some other resistance mechanism is involved for both agents and contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin.
Abstract: The penetration of two antibiotics, ampicillin and ciprofloxacin, through biofilms developed in an in vitro model system was investigated. The susceptibilities of biofilms and corresponding freely suspended bacteria to killing by the antibiotics were also measured. Biofilms of Klebsiella pneumoniae were developed on microporous membranes resting on agar nutrient medium. The susceptibilities of planktonic cultures and biofilms to 10 times the MIC were determined. Antibiotic penetration through biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to an overlying filter disk. Parallel experiments were performed with a mutant K. pneumoniae strain in which beta-lactamase activity was eliminated. For wild-type K. pneumoniae grown in suspension culture, ampicillin and ciprofloxacin MICs were 500 and 0.18 microgram/ml, respectively. The log reductions in the number of CFU of planktonic wild-type bacteria after 4 h of treatment at 10 times the MIC were 4.43 +/- 0.33 and 4.14 +/- 0.33 for ampicillin and ciprofloxacin, respectively. Biofilms of the same strain were much less susceptible, yielding log reductions in the number of CFU of -0.06 +/- 0.06 and 1.02 +/- 0.04 for ampicillin and ciprofloxacin, respectively, for the same treatment. The number of CFU in the biofilms after 24 h of antibiotic exposure was not statistically different from the number after 4 h of treatment. Ampicillin did not penetrate wild-type K. pneumoniae biofilms, whereas ciprofloxacin and a nonreactive tracer (chloride ion) penetrated the biofilms quickly. The concentration of ciprofloxacin reached the MIC throughout the biofilm within 20 min. Ampicillin penetrated biofilms formed by a beta-lactamase-deficient mutant. However, the biofilms formed by this mutant were resistant to ampicillin treatment, exhibiting a 0.18 +/- 0.07 log reduction in the number of CFU after 4 h of exposure and a 1.64 +/- 0.33 log reduction in the number of CFU after 24 h of exposure. Poor penetration contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin. The increased resistance of the wild-type strain to ciprofloxacin and the mutant strain to ampicillin and ciprofloxacin could not be accounted for by antibiotic inactivation or slow diffusion since these antibiotics fully penetrated the biofilms. These results suggest that some other resistance mechanism is involved for both agents.

885 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...Colony biofilms Colony biofilms (see Basic Protocol 3) have typically been used for the purpose of determining antibiotic resistance (Anderl et al., 2000; Walters et al., 2003)....

    [...]

Book ChapterDOI
TL;DR: This article operationally defines a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.
Abstract: Interest in the study of microbial biofilms has increased greatly in recent years due in large part to the profound impact biofilms have in clinical, industrial, and natural settings. Traditionally, the study of biofilms has been approached from an ecological or engineering perspective, using a combination of classical microbiology and advanced microscopy. We and others have begun to use genetic approaches to understand the development of these complex communities. To begin we must answer the question: What is a biofilm? This definition, by necessity, may be quite broad because it is clear that many organisms can attach to a variety of surfaces under diverse environmental conditions. Therefore, in the context of this article we will operationally define a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.

820 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the mutants were impaired in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.
Abstract: The primary attachment to polymer surfaces followed by accumulation in multilayered cell clusters leads to production of Staphylococcus epidermidis biofilms, which are thought to contribute to virulence in biomaterial-related infections. We isolated Tn917 transposon mutants of biofilm-producing S. epidermidis 13-1, which were completely biofilm negative. In pulsed-field gel electrophoresis no obvious deletions of the mutants were noted. The Tn917 insertions of mutants M10 and M11 were located on different EcoRI fragments but on identical 60-kb SmaI and 17-kb BamHI chromosomal fragments. Linkage of transposon insertions of mutants M10 and M11 with the altered phenotype was demonstrated by phage transduction, whereas the several other mutants apparently represented spontaneous variants. In a primary attachment assay with polystyrene spheres, no significant difference between any of the mutants and the wild type could be detected. Cell clustering as an indication of intercellular adhesion, which is a prerequisite for accumulation in multilayered cell clusters, was not detected with any mutant. These results demonstrate that the mutants were impaired in the accumulative phase of biofilm production. Mutants M10 and M11 did not produce detectable amounts of a specific polysaccharide antigen (D. Mack, N. Siemssen, and R. Laufs, Infect. Immun. 60:2048-2057, 1992), whereas substantially reduced amounts of antigen were produced by the spontaneous variants. Hexosamine was determined as the major specific component of the antigen enriched by gel filtration of biofilm-producing S. epidermidis 1457 because almost no hexosamine was detected in material prepared from the isogenic biofilm-negative transductant 1457-M11, which differentiates the antigen from other S. epidermidis polysaccharide components. Our results provide direct genetic evidence for a function of the antigen in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.

343 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]