scispace - formally typeset
Search or ask a question
Reference EntryDOI

Growing and analyzing static biofilms

TL;DR: In this article, the early stages of biofilm formation are examined using static biofilm assays, which are suitable for either small or relatively large-scale studies and can be used individually or in combination for the study of biofilms.
Abstract: Many bacteria can exist as surface-attached aggregations known as biofilms. Presented in this unit are several approaches for the study of these communities. The focus here is on static biofilm systems, which are particularly useful for examination of the early stages of biofilm formation, including initial adherence to the surface and microcolony formation. Furthermore, most of the techniques presented are easily adapted to the study of biofilms under a variety of conditions and are suitable for either small- or relatively large-scale studies. Unlike assays involving continuous-flow systems, the static biofilm assays described here require very little specialized equipment and are relatively simple to execute. In addition, these static biofilm systems allow analysis of biofilm formation with a variety of readouts, including microscopy of live cells, macroscopic visualization of stained bacteria, and viability counts. Used individually or in combination, these assays provide useful means for the study of biofilms.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts, compared with vancomycin or metronidazole.
Abstract: Background Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. Objectives In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. Methods C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. Results Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. Conclusions Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.

26 citations

Journal ArticleDOI
16 Nov 2016
TL;DR: It was found that anoxic conditions caused reduced sensitivity of bacteria to aminoglycoside antibiotics in four of six bacteria used in the study, highlighting the importance of considering the potential in vivo oxygen levels within the infection site when setting susceptibility breakpoints.
Abstract: Standard antimicrobial susceptibility tests are performed in vitro under normal room oxygen conditions to predict the in vivo effectiveness of antimicrobial therapy. The aim of this study was to conduct a comprehensive analysis of the effect of different oxygen levels on the antibiotic susceptibility of two strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. It was found that anoxic conditions caused reduced sensitivity of bacteria to aminoglycoside antibiotics in four of six bacteria used in the study. In addition, oxygen limitation decreased the susceptibility of P. aeruginosa strains and K. pneumoniae strains to piperacillin/tazobactam and azithromycin, respectively. In contrast, five of six bacteria became more susceptible to tetracycline antibiotics under oxygen-limiting conditions. Our data highlight the importance of considering the potential in vivo oxygen levels within the infection site when setting susceptibility breakpoints for evaluating the therapeutic potential of a drug and its effect on antibiotic sensitivity of the pathogen.

26 citations


Cites methods from "Growing and analyzing static biofil..."

  • ...CV was solubilized using acetic acid 50% (v/v), and relative biofilm biomass was assayed by measuring the optical density of the CV solution at 600 nm (OD600).(25) The experiments were conducted twice in quadruplicate....

    [...]

Journal ArticleDOI
TL;DR: The findings suggested that the acquisition of rifampicin resistance in S. aureus was dynamic and was associated with a significant fitness cost, whereas the capacity for biofilm formation was elevated.
Abstract: We aimed to determine the evolutionary pathways of rifampicin resistance in Staphylococcus aureus, and the impact of resistance mutations in the rpoB gene on fitness. Three clinical strains and one reference strain were used to select for rifampicin-resistant S. aureus variants. The mutations responsible for rifampicin resistance in all of the selected isolates in vitro were investigated by polymerase chain reaction (PCR) and DNA sequencing. To compare the fitness cost of rpoB mutations against their corresponding original isolates, we performed bacterial growth curve assays, static biofilm assays, in vitro competition experiments and an infection model of Galleria mellonella larvae. We obtained four rifampicin-resistant S. aureus isolates that showed high levels of resistance to rifampicin with a minimal inhibitory concentration (MIC) of 128 mg/L, and all isolates had a mutation at position 481 (H481F/Y) in RpoB. A broth microdilution assay indicated that mutation of H481F/Y did not affect susceptibility to common antibacterial drugs but slightly increased the vancomycin MIC. To identify the pathways involved in the development of rifampicin resistance, 32 variants (eight mutants for each strain) and four original isolates were selected for gene sequencing. Different generations of isolates were found to harbor various mutations sites. Compared with the corresponding original isolates, an in vitro fitness assay of the variant isolates showed that growth and virulence were reduced, with a statistically significantly decreased fitness, whereas the capacity for biofilm formation was elevated. Our findings suggested that the acquisition of rifampicin resistance in S. aureus was dynamic and was associated with a significant fitness cost.

26 citations


Cites methods from "Growing and analyzing static biofil..."

  • ...Biofilm determination was conducted according to a previous report with minor modifications [15]....

    [...]

Journal ArticleDOI
TL;DR: The overall results demonstrate that all four selected strains of PNSB have a great potential for future application in the remediation of As-contaminated areas although R. palustris C1 was the most effective candidate.
Abstract: The objectives of this study were to investigate arsenic (As) contamination in areas surrounding mines in Thailand and to isolate As-resistant purple nonsulfur bacteria (PNSB) for their potential application in microbial As bioremediation. Total As in water and soil samples collected from two As-contaminated sites in Thailand exceeded the standard guidelines. Four strains of As-resistant PNSB were selected from 348 isolates based on their As detoxification mechanisms, including biofilm formation, As redox transformations, glutathione (GSH) production, and production of methylcobalamin (vitamin B12) and S-adenosylmethionine (SAM) for As biomethylation. GSH production in these strains followed the order AB3 > L28 > C1. Strains AB3, C31, and L28 accumulated higher levels of intracellular vitamin B12 than strain C1. However, only strain C1 produced SAM and showed As biovolatilization activity. When strain C1 was incubated under microaerobic light conditions, it produced arsenobetaine [(AsB(V)] in medium with As(III) and monomethylarsonic acid [MMA(V)] in medium with As(V), which were found in the culture supernatants. Volatile methylated As compounds, such as dimethylarsenic acid [DMA(V)] and MMA(V)], were also detected in strain C1 during 30 days of incubation with As(III) and As(V). Strains AB3, C1, and L28 were identified as Rhodopseudomonas palustris and strain C31 as Rubrivivax benzoatilyticus. The resistance of these strains to As [As(III) and As(V)] based on minimum inhibition concentration values under aerobic dark and microaerobic light conditions, respectively, was in the order of C1 > AB3 > C31 > L28. The overall results demonstrate that all four selected strains of PNSB have a great potential for future application in the remediation of As-contaminated areas although R. palustris C1 was the most effective candidate.

26 citations

Journal ArticleDOI
TL;DR: The results show that planktonic and biofilm-embedded cells where the BfrB-Bfd complex is blocked exhibit cytosolic iron deficiency, and poorly developed biofilms, even in iron-sufficient culture conditions.
Abstract: Although iron is essential for bacteria, the nutrient presents problems of toxicity and solubility. Bacteria circumvent these problems with the aid of iron storage proteins where Fe3+ is deposited and, when necessary, mobilized as Fe2+ for metabolic requirements. In Pseudomonas aeruginosa, Fe3+ is compartmentalized in bacterioferritin (BfrB), and its mobilization as Fe2+ requires specific binding of a ferredoxin (Bfd) to reduce the stored Fe3+. Blocking the BfrB-Bfd complex leads to irreversible iron accumulation in BfrB and cytosolic iron deprivation. Consequently, given the intracellular iron sufficiency requirement for biofilm development, we hypothesized that blocking the BfrB-Bfd interaction in P. aeruginosa would impair biofilm development. Our results show that planktonic and biofilm-embedded cells where the BfrB-Bfd complex is blocked exhibit cytosolic iron deficiency, and poorly developed biofilms, even in iron-sufficient culture conditions. These results underscore inhibition of the BfrB-Bfd complex as a rational target to dysregulate iron homeostasis and possibly control biofilms.

25 citations

References
More filters
Journal ArticleDOI
TL;DR: The optical densities of stained bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections.
Abstract: The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images

1,980 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]

Journal ArticleDOI
TL;DR: Results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
Abstract: The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 μg of tobramycin ml−1or 1.0 μg of ciprofloxacin ml−1. After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 ± 0.18 for tobramycin and 1.42 ± 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 μm into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.

918 citations

Journal ArticleDOI
TL;DR: The results suggest that some other resistance mechanism is involved for both agents and contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin.
Abstract: The penetration of two antibiotics, ampicillin and ciprofloxacin, through biofilms developed in an in vitro model system was investigated. The susceptibilities of biofilms and corresponding freely suspended bacteria to killing by the antibiotics were also measured. Biofilms of Klebsiella pneumoniae were developed on microporous membranes resting on agar nutrient medium. The susceptibilities of planktonic cultures and biofilms to 10 times the MIC were determined. Antibiotic penetration through biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to an overlying filter disk. Parallel experiments were performed with a mutant K. pneumoniae strain in which beta-lactamase activity was eliminated. For wild-type K. pneumoniae grown in suspension culture, ampicillin and ciprofloxacin MICs were 500 and 0.18 microgram/ml, respectively. The log reductions in the number of CFU of planktonic wild-type bacteria after 4 h of treatment at 10 times the MIC were 4.43 +/- 0.33 and 4.14 +/- 0.33 for ampicillin and ciprofloxacin, respectively. Biofilms of the same strain were much less susceptible, yielding log reductions in the number of CFU of -0.06 +/- 0.06 and 1.02 +/- 0.04 for ampicillin and ciprofloxacin, respectively, for the same treatment. The number of CFU in the biofilms after 24 h of antibiotic exposure was not statistically different from the number after 4 h of treatment. Ampicillin did not penetrate wild-type K. pneumoniae biofilms, whereas ciprofloxacin and a nonreactive tracer (chloride ion) penetrated the biofilms quickly. The concentration of ciprofloxacin reached the MIC throughout the biofilm within 20 min. Ampicillin penetrated biofilms formed by a beta-lactamase-deficient mutant. However, the biofilms formed by this mutant were resistant to ampicillin treatment, exhibiting a 0.18 +/- 0.07 log reduction in the number of CFU after 4 h of exposure and a 1.64 +/- 0.33 log reduction in the number of CFU after 24 h of exposure. Poor penetration contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin. The increased resistance of the wild-type strain to ciprofloxacin and the mutant strain to ampicillin and ciprofloxacin could not be accounted for by antibiotic inactivation or slow diffusion since these antibiotics fully penetrated the biofilms. These results suggest that some other resistance mechanism is involved for both agents.

885 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...Colony biofilms Colony biofilms (see Basic Protocol 3) have typically been used for the purpose of determining antibiotic resistance (Anderl et al., 2000; Walters et al., 2003)....

    [...]

Book ChapterDOI
TL;DR: This article operationally defines a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.
Abstract: Interest in the study of microbial biofilms has increased greatly in recent years due in large part to the profound impact biofilms have in clinical, industrial, and natural settings. Traditionally, the study of biofilms has been approached from an ecological or engineering perspective, using a combination of classical microbiology and advanced microscopy. We and others have begun to use genetic approaches to understand the development of these complex communities. To begin we must answer the question: What is a biofilm? This definition, by necessity, may be quite broad because it is clear that many organisms can attach to a variety of surfaces under diverse environmental conditions. Therefore, in the context of this article we will operationally define a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.

820 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the mutants were impaired in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.
Abstract: The primary attachment to polymer surfaces followed by accumulation in multilayered cell clusters leads to production of Staphylococcus epidermidis biofilms, which are thought to contribute to virulence in biomaterial-related infections. We isolated Tn917 transposon mutants of biofilm-producing S. epidermidis 13-1, which were completely biofilm negative. In pulsed-field gel electrophoresis no obvious deletions of the mutants were noted. The Tn917 insertions of mutants M10 and M11 were located on different EcoRI fragments but on identical 60-kb SmaI and 17-kb BamHI chromosomal fragments. Linkage of transposon insertions of mutants M10 and M11 with the altered phenotype was demonstrated by phage transduction, whereas the several other mutants apparently represented spontaneous variants. In a primary attachment assay with polystyrene spheres, no significant difference between any of the mutants and the wild type could be detected. Cell clustering as an indication of intercellular adhesion, which is a prerequisite for accumulation in multilayered cell clusters, was not detected with any mutant. These results demonstrate that the mutants were impaired in the accumulative phase of biofilm production. Mutants M10 and M11 did not produce detectable amounts of a specific polysaccharide antigen (D. Mack, N. Siemssen, and R. Laufs, Infect. Immun. 60:2048-2057, 1992), whereas substantially reduced amounts of antigen were produced by the spontaneous variants. Hexosamine was determined as the major specific component of the antigen enriched by gel filtration of biofilm-producing S. epidermidis 1457 because almost no hexosamine was detected in material prepared from the isogenic biofilm-negative transductant 1457-M11, which differentiates the antigen from other S. epidermidis polysaccharide components. Our results provide direct genetic evidence for a function of the antigen in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.

343 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]