scispace - formally typeset
Search or ask a question
Reference EntryDOI

Growing and analyzing static biofilms

TL;DR: In this article, the early stages of biofilm formation are examined using static biofilm assays, which are suitable for either small or relatively large-scale studies and can be used individually or in combination for the study of biofilms.
Abstract: Many bacteria can exist as surface-attached aggregations known as biofilms. Presented in this unit are several approaches for the study of these communities. The focus here is on static biofilm systems, which are particularly useful for examination of the early stages of biofilm formation, including initial adherence to the surface and microcolony formation. Furthermore, most of the techniques presented are easily adapted to the study of biofilms under a variety of conditions and are suitable for either small- or relatively large-scale studies. Unlike assays involving continuous-flow systems, the static biofilm assays described here require very little specialized equipment and are relatively simple to execute. In addition, these static biofilm systems allow analysis of biofilm formation with a variety of readouts, including microscopy of live cells, macroscopic visualization of stained bacteria, and viability counts. Used individually or in combination, these assays provide useful means for the study of biofilms.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The synthesis of pyocyanin was suffocated and the biofilm formation ability was decreased, which was confirmed by transcriptome analysis, which demonstrated similar gene expression changes of the aforementioned genes together with decreased expression of other virulence factor genes regulated by QS system.
Abstract: MvaT and MvaU are global transcriptional regulators belonging to the H-NS family, and pyocyanin is an important virulence factor produced by Pseudomonas aeruginosa. mvaT mvaU double knockout mutant of P. aeruginosa PAO1 demonstrated pyocyanin abolishment in the previous study. Here, we further explored the mechanism. Two main directions were studied: pyocyanin biosynthesis pathway and QS system. The effect on the expression of the pyocyanin biosynthesis genes was evaluated by promoter strength determination and Real-Time PCR assay, and significant changes leading to low pyocyanin production were found. The effect on the QS system was studied by signal molecule quantification using LC-MS/MS and related gene expression measurements using Real-Time PCR. In mvaT mvaU double knockout, the production of 3-oxo-C12-HSL obviously increased, while those of C4-HSL and PQS obviously decreased, and the changes can be recovered by mvaT or mvaU complementation. The expressions of transcriptional activator genes binding with QS system signal molecules were all decreased, resulting in decreased formation of signal-transcriptional activator complexes. And the decreased expression of rhlR and pqsE also led to the lower expression of phzA1 and phzA2. Further exploration found that QS system downregulation may be related to QsrO, a QS system repressor, which was highly upregulated with mvaT mvaU double knockout. Hence, the synthesis of pyocyanin was suffocated and the biofilm formation ability was decreased. These results were also confirmed by transcriptome analysis, which demonstrated similar gene expression changes of the aforementioned genes together with decreased expression of other virulence factor genes regulated by QS system.

12 citations

Journal ArticleDOI
24 May 2021
TL;DR: In this article, the binding affinities of three aptamers are evaluated by obtaining their dissociation constants (Kd), which range from 13.2 to 26.3 nM.
Abstract: B. carboniphilus is a naphtha-degradative strain (NDS) that uses hydrocarbons for its growth and causes microbiologically influenced corrosion (MIC) in naphtha pipelines. To date, there have been no studies on receptors or sensors for the detection of B. carboniphilus. We isolate B. carboniphilus-specific aptamers with a non-SELEX-based method, which employs repetitive cycles of centrifugation-based partitioning. The binding affinities of three aptamers are evaluated by obtaining their dissociation constants (Kd), which range from 13.2 to 26.3 nM. The BCA-05 aptamer with the lowest Kd value is employed for a two-stage label-free aptasensing platform to verify the aptamer selectivity using colorimetric detection of B. carboniphilus. This platform starts with the aptamer-bacteria binding step, and the concentration of residual aptamer after binding depends on the amount of the target bacteria. Then, the amount of separated residual aptamer determines the degree of salt-induced aggregation of gold nanoparticles (AuNPs), which results in a color change from red to blue. The AuNP color change is expressed as the ratio of absorbances at 630 and 520 nm (A630/A520). Under optimized conditions, this aptasensor shows reliable performance with a linear correlation in the range 104–107 CFU mL−1 and a limit of detection of 5 × 103 CFU mL−1.

12 citations


Cites methods from "Growing and analyzing static biofil..."

  • ...xylosus) was spread on a nutrient agar plate and incubated at 30 ◦C for two days [29,30]....

    [...]

Journal ArticleDOI
TL;DR: A very simple electrochemical assay to monitor the anti-biofilm activity of compounds of interest is presented and mass spectrometry data showing multiple redox active phenazine compounds are presented to provide insight into the surface reaction complexity.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as V. campbellii, and deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q 150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P 150 (PP; 5.4%).
Abstract: Luminescent vibriosis is a major bacterial disease in shrimp hatcheries and causes up to 100% mortality in larval stages of penaeid shrimps. We investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as Vibrio harveyi. Haemolysin gene-based species-specific multiplex PCR and phylogenetic analysis of rpoD and toxR identified all the isolates as V. campbellii. The gene-specific PCR revealed the presence of virulence markers involved in quorum sensing (luxM, luxS, cqsA), motility (flaA, lafA), toxin (hly, chiA, serine protease, metalloprotease), and virulence regulators (toxR, luxR) in all the isolates. The deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P150 (PP; 5.4% isolates) based on amino acid at 123rd (proline or alanine) and 150th (glutamine or proline) positions. A significantly higher level of the quorum-sensing signal, autoinducer-2 (AI-2, p = 2.2e-12), and significantly reduced protease activity (p = 1.6e-07) were recorded in AP variant, whereas an inverse trend was noticed in the Q150 variants AQ and PQ. The pathogenicity study in Penaeus (Litopenaeus) vannamei juveniles revealed that all the isolates of AQ were highly pathogenic with Cox proportional hazard ratio 15.1 to 32.4 compared to P150 variants; PP (5.4 to 6.3) or AP (7.3 to 14). The correlation matrix suggested that protease, a metalloprotease, was positively correlated with pathogenicity (p > 0.05) and negatively correlated (p < 0.05) with AI-2 and AI-1. The syntenic organization of toxS-toxR-htpG operon in V. campbellii was found to be similar to pathogenic V. cholerae suggesting a similar regulatory role. The present study emphasizes that V. campbellii is a predominant pathogen in Indian shrimp hatcheries, and ToxR plays a significant role as a virulence regulator in the quorum sensing-protease pathway. Further, the study suggests that the presence of glutamine at 150th position (Q150) in ToxR is crucial for the pathogenicity of V. campbellii.

12 citations

Journal ArticleDOI
01 Dec 2015-Anaerobe
TL;DR: In vitro experiments indicate that estradiol regulates the DPPIV enzyme activity of P. intermedia, P. nigrescens, pallens, and P. aurantiaca strains differently, which may explain the role of Estradiol to elicit a virulent state which contributes to the pathogenesis of pregnancy-related gingivitis.

12 citations

References
More filters
Journal ArticleDOI
TL;DR: The optical densities of stained bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections.
Abstract: The adherence of coagulase-negative staphylococci to smooth surfaces was assayed by measuring the optical densities of stained bacterial films adherent to the floors of plastic tissue culture plates. The optical densities correlated with the weight of the adherent bacterial film (r = 0.906; P less than 0.01). The measurements also agreed with visual assessments of bacterial adherence to culture tubes, microtiter plates, and tissue culture plates. Selected clinical strains were passed through a mouse model for foreign body infections and a rat model for catheter-induced endocarditis. The adherence measurements of animal passed strains remained the same as those of the laboratory-maintained parent strain. Spectrophotometric classification of coagulase-negative staphylococci into nonadherent and adherent categories according to these measurements had a sensitivity, specificity, and accuracy of 90.6, 80.8, and 88.4%, respectively. We examined a previously described collection of 127 strains of coagulase-negative staphylococci isolated from an outbreak of intravascular catheter-associated sepsis; strains associated with sepsis were more adherent than blood culture contaminants and cutaneous strains (P less than 0.001). We also examined a collection of 84 strains isolated from pediatric patients with cerebrospinal fluid (CSF) shunts; once again, pathogenic strains were more adherent than were CSF contaminants (P less than 0.01). Finally, we measured the adherence of seven endocarditis strains. As opposed to strains associated with intravascular catheters and CSF shunts, endocarditis strains were less adherent than were saprophytic strains of coagulase-negative staphylococci. The optical densities of bacterial films adherent to plastic tissue culture plates serve as a quantitative model for the study of the adherence of coagulase-negative staphylococci to medical devices, a process which may be important in the pathogenesis of foreign body infections. Images

1,980 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]

Journal ArticleDOI
TL;DR: Results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
Abstract: The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 μg of tobramycin ml−1or 1.0 μg of ciprofloxacin ml−1. After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 ± 0.18 for tobramycin and 1.42 ± 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 μm into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.

918 citations

Journal ArticleDOI
TL;DR: The results suggest that some other resistance mechanism is involved for both agents and contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin.
Abstract: The penetration of two antibiotics, ampicillin and ciprofloxacin, through biofilms developed in an in vitro model system was investigated. The susceptibilities of biofilms and corresponding freely suspended bacteria to killing by the antibiotics were also measured. Biofilms of Klebsiella pneumoniae were developed on microporous membranes resting on agar nutrient medium. The susceptibilities of planktonic cultures and biofilms to 10 times the MIC were determined. Antibiotic penetration through biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to an overlying filter disk. Parallel experiments were performed with a mutant K. pneumoniae strain in which beta-lactamase activity was eliminated. For wild-type K. pneumoniae grown in suspension culture, ampicillin and ciprofloxacin MICs were 500 and 0.18 microgram/ml, respectively. The log reductions in the number of CFU of planktonic wild-type bacteria after 4 h of treatment at 10 times the MIC were 4.43 +/- 0.33 and 4.14 +/- 0.33 for ampicillin and ciprofloxacin, respectively. Biofilms of the same strain were much less susceptible, yielding log reductions in the number of CFU of -0.06 +/- 0.06 and 1.02 +/- 0.04 for ampicillin and ciprofloxacin, respectively, for the same treatment. The number of CFU in the biofilms after 24 h of antibiotic exposure was not statistically different from the number after 4 h of treatment. Ampicillin did not penetrate wild-type K. pneumoniae biofilms, whereas ciprofloxacin and a nonreactive tracer (chloride ion) penetrated the biofilms quickly. The concentration of ciprofloxacin reached the MIC throughout the biofilm within 20 min. Ampicillin penetrated biofilms formed by a beta-lactamase-deficient mutant. However, the biofilms formed by this mutant were resistant to ampicillin treatment, exhibiting a 0.18 +/- 0.07 log reduction in the number of CFU after 4 h of exposure and a 1.64 +/- 0.33 log reduction in the number of CFU after 24 h of exposure. Poor penetration contributed to wild-type biofilm resistance to ampicillin but not to ciprofloxacin. The increased resistance of the wild-type strain to ciprofloxacin and the mutant strain to ampicillin and ciprofloxacin could not be accounted for by antibiotic inactivation or slow diffusion since these antibiotics fully penetrated the biofilms. These results suggest that some other resistance mechanism is involved for both agents.

885 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...Colony biofilms Colony biofilms (see Basic Protocol 3) have typically been used for the purpose of determining antibiotic resistance (Anderl et al., 2000; Walters et al., 2003)....

    [...]

Book ChapterDOI
TL;DR: This article operationally defines a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.
Abstract: Interest in the study of microbial biofilms has increased greatly in recent years due in large part to the profound impact biofilms have in clinical, industrial, and natural settings. Traditionally, the study of biofilms has been approached from an ecological or engineering perspective, using a combination of classical microbiology and advanced microscopy. We and others have begun to use genetic approaches to understand the development of these complex communities. To begin we must answer the question: What is a biofilm? This definition, by necessity, may be quite broad because it is clear that many organisms can attach to a variety of surfaces under diverse environmental conditions. Therefore, in the context of this article we will operationally define a biofilm as bacteria that are attached to a surface in sufficient numbers to be detected macroscopically.

820 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the mutants were impaired in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.
Abstract: The primary attachment to polymer surfaces followed by accumulation in multilayered cell clusters leads to production of Staphylococcus epidermidis biofilms, which are thought to contribute to virulence in biomaterial-related infections. We isolated Tn917 transposon mutants of biofilm-producing S. epidermidis 13-1, which were completely biofilm negative. In pulsed-field gel electrophoresis no obvious deletions of the mutants were noted. The Tn917 insertions of mutants M10 and M11 were located on different EcoRI fragments but on identical 60-kb SmaI and 17-kb BamHI chromosomal fragments. Linkage of transposon insertions of mutants M10 and M11 with the altered phenotype was demonstrated by phage transduction, whereas the several other mutants apparently represented spontaneous variants. In a primary attachment assay with polystyrene spheres, no significant difference between any of the mutants and the wild type could be detected. Cell clustering as an indication of intercellular adhesion, which is a prerequisite for accumulation in multilayered cell clusters, was not detected with any mutant. These results demonstrate that the mutants were impaired in the accumulative phase of biofilm production. Mutants M10 and M11 did not produce detectable amounts of a specific polysaccharide antigen (D. Mack, N. Siemssen, and R. Laufs, Infect. Immun. 60:2048-2057, 1992), whereas substantially reduced amounts of antigen were produced by the spontaneous variants. Hexosamine was determined as the major specific component of the antigen enriched by gel filtration of biofilm-producing S. epidermidis 1457 because almost no hexosamine was detected in material prepared from the isogenic biofilm-negative transductant 1457-M11, which differentiates the antigen from other S. epidermidis polysaccharide components. Our results provide direct genetic evidence for a function of the antigen in the accumulative phase of biofilm production by S. epidermidis by mediating intercellular adhesion.

343 citations


"Growing and analyzing static biofil..." refers methods in this paper

  • ...While popularized in the mid-to-late 1990s (Mack et al., 1994; O’Toole et al., 1999), the assay in its typically used form is derived from a protocol published by Christensen et al. (1985)....

    [...]