scispace - formally typeset

Journal ArticleDOI

Групповой анализ краевых задач математической физики

01 Jan 1999-Ukrainian Mathematical Journal (Springer Science and Business Media LLC)-Vol. 51, Iss: 1, pp 140-144

About: This article is published in Ukrainian Mathematical Journal.The article was published on 1999-01-01 and is currently open access. It has received 2 citation(s) till now.

Content maybe subject to copyright    Report

Y~ 517.946.9
T. M.
HeTecona (HH-T HaTeHaTHKH HAH YKpaHHbl, KtleB)
ITYIIHOBOI~ AHAJIH3 KPAEBbIX
3Aj]Aq MATEMATHtIECKOI~ |
Invariance conditions and conditions of invariant solvability are obtained for boundary-value problems
in mathematical physics.
OTpHHaui yHosu iHBapiaHTXOCTi Ta iHnapiaHTHOi pOan'a3H0CTi Kpaflonax 3a~la,~ MaTeMaTHqH0i
B o6mapao~t cdpepe npaaomemna Teoprlri rpynnosoro aHaJm3a ~aqbqbcpcrmHa2mHHX
ypaBHCHH~I [1] aMeeTca ~enuR pJ~; 3a~aq arrrepecnux H Ba3KHblX KaK
B
o6nacTn
c1)yH]~aMCHTaJIbHhlX HCCJIC~OBaHH~, TaK H a npaKTHqeCKOH nnaHc, HayqeHHC KOTO-
pI~lX r ~aJICK0 /~0 3aBcplIICHHJt. O/][HH H3 TaKHX BOHpOCOB ~ FpyIIIIOBOl~ aHaJIH3
KpaCBhlX 3a~atI MaTCMaTHqCCKOIt dpH3HKH. ~0 CHX Hop BCTpeHalOTC~ J-lHllIb OT-
~e/Ibrlr~e rlprlHepbt Hay,4eHIrUI CBOItCTB HI-mapHaHTHOCT~ KpaeBhlX
3a~a,~ [2, 3].
~aHHaJ~ pa6oTa nocBJtmeHa Hccne/~oBamno
~onpocoB HHBapHaaTaOCTH
KpaeB~x
3a~a~
HaTeHarrrqccKolt
C~DH3HKH.
Hpe~npHmrra nonmaxa ycTaHoB.rleHH$I KpHTepHeB
HX HHBapHaHTH0~ paapcmnHoca-a.
IIycTh
B
HeKOTOpOM IIpOCTpaHCTBe
RN(x,
u), X
=
(Xl, X 2 ..... Xn), U
=
(Ul, U 2 ....
.... Um), N = n + m,
paccHaTpHBaerca KpaeBaa (naqa~bao-~paeBaz) aa/Iaqa ~na
CHCTeMt~I//~I(~C1DCpCHI/~aYI~H/~X ypaBHeHI~:
~ff~: FV(x,u,u ',
.... u (~)) = 0, v
=
1,2 ..... k, (1)
C KpaeBhlMrl (Haqa.rlbHO-KpaeBhlHa) yc.rl0Brl~IHa
~: ~rt(x,u,u',
...) = 0, ~t = 1,2 ..... k, (2)
,,
u(~) _-
F~C
U', U , ..., IIpOH3BO~HhlC IICpeMCHHHX U 1 , U2, ..., /~m IIO Xl, X2, ...,
X n
go
nop~Ka ~: BKJ/IOUj4TC/~HO.
PaccMaTpHBa~ ~'~ H ~ KaK MHOFOO6pa3H~ B HCKOTOpOH Hpo/~oII~KeHHOM
npoc'rpaHcrBe Rg(x, u, u', u", .... u00), M = n + m + (~: - 1),
6yl~cH
Ha3uBaT~,
KpacBym (Ha'~a.m,HO-KpaCBy',o) 3a~a,~ ~ - ~ - (1), (2)
uu~apuanmno~ (cu~em-
pu~noa),
ecJm cymecTsyer rpyrma npeoSpa30BaHma G~ OTHOCHTeJIbHO KOT0p01~
mmapHanTri~ KaZ ypaBHem~a ~]~- (I), TaX H zpaeB~ac (HaaonmHo-Kpaes~e) yCnOBnJi
- (2) 3a/Iaqrl. E/II4~ICTBCHHOe p~IIICHHC U TaKOI~ ~a~a~a, ccJm OHO CylRCCTByeT,
6y~;cM Ha3blBaTb
unoapuaumn~.~t (cu~t~tempul~nbt~t)pelIIeHHeM
3a/~aqH ~- ~, a
aa~a,~y
~ ~puanmno pazpeu~u~tozL
~a.ra,me a/Ipo OCHOBI-II~X FpyIIH
G N
npeo6pa3osaHrd~ HCXO~HOFO ypaBHeHaJt (CH-
CTCHI~ ypaBHeHrn~) 6ygeH o6o3Ha~laTb qepc3
G
.
Oqenmmo, wro aJ~a paccMarprmaeHoll 3a~aqH npeo6pa3oBar!H)~HH HHBapHaHT-
Hocra 6y/lyr T0SmKO TC npeo6pazosarm~ P Ha J~pa G ocnosmax rpynn cHcreHu
ypaaHern~ (I), KOTOpUe XSmnOTCS TazomaMrI ~ana nocramucnmax KpaeBuX
(Ha,~am,-
H0-KpacBhlX) ycn0nHlt
(2)
3atla~H. B
3T01t CBH3H I~IHOBOI~/aHaYlH3 Kpaesblx
~aa
~)q~IP.,CTHO B~ B T~pMP~aX o/moro OT~e,21bHO B3JITOFO IIpeo6pa3oBalta.q P H3 J~tpa
G
OCHOSmax rpynn aCXO/IaOtt cHerema ypa~erma pacc~aTprlaaeMott
aa/Ia~m.
J;[CHO, trro 1t KOpHr
aeeae~tyeHoro
sonpoca
ae~3rr gpltTCpP3t HHBapHaHTHOCTH
~aoroo6pa3rta. Hanomm~, wro paccHarprmaeMoe n
E.
MHOroo6pa3rlC (noBepx-
nocr~) ~2, aazIamaoc ypaaacmtam~
T. M. ~OBA~ 1999
140 I$SN 0041.6053, Yxp. ~m. .,wylm,, 1999, m. 51, IV ~ ]

FPYl'IFIOBO~I AHAJIH3 KPAEBbIX 3A,/IAq MATEMATHqECKO~I ~H3HKH 141
9 ~ ~= 1,2 ..... s, x=x I,x2 .....
Xn,
(3)
Ha3hIBaCTC$1 HHBapHaHTHrJM MHOFOO6pa3HCM
HeKOTOpOI~ FpyIIHKI
G r
npeo6paaoBa-
HI4fl
(n-
pa3MCpHOCTb npocTpaHCTBa, r- napaMcTp rpynn~),
cc~H ~
.mo6oro
npco6paaosaaHa
Tae G~
(Ta:
xi=j~(x,a),
a=al,a 2
.....
ar), x
e
~'d,
cne~yeT
T a x
9
~ff~.
CornacHo KpHTepHIO rlHBaprlaHTH0CTrI MH0roo6pa3nJl/~.rlJt TOrO, Wl'O6bl
3a~aHHoe MHOroo6paaae (3) 6ranO HrmapHarrrHh~, Heo6xomrMo H ~OCTaTO~mO, ~rro-
6m ~na Bcex r0~eK 3Tor0 Mnoroo6pazHa mano0mmmcb paBeHCTBa
Xa~FO(x)
= 0, a = 1,2 ..... r, 6 < 1,2 ..... s, (4)
r~e X a -- HHqbHHrrre3aMara~Hralt oneparop rpynwa G~ n, COOTSeTCTSymttmil npe-
o6pa3oBam o
Ta.
B HatuHx
HCCo-le/~0BaHHJ~X
0FpaHHqI4MC.q paccMoTpeHHeM o/monapaMeTpHuecKHx
rpyrm npeo6pa3oBaHHia (r = 1 ). ~TO o3aaaaeT, aTO ec0m rrpeo6paaoBarm~
T a
H3 r-
napaMeTpauecKo~t rpyrmta G~ npeo6paaosaHH~ COOTBeTCTByeT miqbmmTezrtMa-
0mH~ll onepaTop
X a,
TO upa HatUHX npezmoaoaceHHaX npeo6pazonaHam P Ha
O~HonapaMeTprrqecKott rpynma G 6y~eT COOTSeTCTBOBaTb orIepaTop
i
Xp = ~i(x,u)~x, + ;(x,U)Ouj,
i = 1,2 ..... n, j = 1,2 ..... m. (5)
Tor~a MHOF006pa3HJ/ ~ -
(1) a ~
-
(2)
5y~yT
HHBapHaHTHI~I
OTHOCHTeYlbHO
O~HO-
ro H TOt 0 ~Ke npeo6paaoBanaa P, ecom B IIpo~0JDKeHHOM np0cTpaHCTBe R M Bbl-
nonaaiOTCa paBericTBa
Xt,^r FV(x, u, u', ....
u(~))]~ = 0, (6)
A~
o~g (x,
u, u .... )[S~
Xp "
=
0, (7)
r~e ,, ^" o3HaqaeT npo~to~enae onepaTopa X v ~to nopaz~Ka ~=
PaBeHCTBa (6) H (7), KOTOpBIe nl~gCTaBn.qiOT co6olt ycnosHJt HHBapHaHTHOCTH
ypaBHeHma (1)H (2) OTHOCHTe~HO rrpeo6pa3oBarma P c G, 6y~eM Haa~maT~
paaen-
cmsa~tu (yc.aosu~tu) unsapuanmnocmu
KpaeBoR (HaqaYmHO-KpaeBo~I) 3a~aaH OTHO-
CHTenBHO rlpeo6pa3oBaHHJt
P H3 a~pa G OCHOBHI~IX rpynn npeo6pazoBanHll CHcre-
TpaBHeHHI~I (1).
HOO6XOgHMO OTMOT~T~, '-IYO HOHnT~O mmapHaHTHOCTH KpaoBoro ycnomIa n aaga-
~ax MaTeMaTHqecKofl
CIDH3HKH HMeeT
cnelii4dpI4qecKyIO
OCO~HHOCTb,
KOTOpa.q ilpe/~-
nonaraeT ssmoomeH.e ~On0~HaTen~HOr0 yco~onHa. A HMeHHO, TpeSoBarme arma-
p.aHT~OCTH KpaeBoro ~HorooSpaaHx ~ oTaocrrreomHO npeo6pa3o~aHna P c G,
~onycKae~oro ypaSHeHHJ~H (2), B~mouaeT B ce6a eme H n~osmeHHe a'pe6oBaaHa
onpo~eneHHOlt cor~aco~armocr~ nocras~eHmax KpaeBraX (a Haaasmmax) ycn0~Hi~
paccMaTpH~ae~olt 3a~a.ra. ~ro aono0mrrresmHoe Tpe6onarrae 3a~sno~aeTc~ B TO~,
qTO ssrtayyMermmerm~ ,tocsin Hc3aBHCHM~X ncpestCHmaX B peayamTaTe IIpHMCHeHI~t
~eToao~ rpyrmosoro aHa0maa COOTSeTCTSermo ~O~'KHO y~ermmaT~ca ~ac~o nocTa-
Bnemnax ~ono0mrrrem, max ycaoBma pacc~aapmmeMoit 3a~a~m. ~pyr~ enoBa~m,
/~Ba (H~.rl 6once) ycnosHJl rIOCTaI~CHHOfl xpaesolt (Haqa.llbHO-XpacBOIt) 3a~aqH
~O~KHr~ TpaHcqbopM~posaT~CX B O/toO yc~oBHe B pe~aytmpoBamao~l 3a~a,~c. HanpH-
Mop, B c~y~ae HatlaYlSHO-Xpacsl~X 3a/~aq IUI~ O/IHOMCpHI~X ~BO/IIOI~HOHH~X ypaBHC-
HHa MaTeMaTrraecKolt ~bn~ot (rrpH WrOM HeKOMOe pemeHHe u = u(x, t ) -- qbyHKtma
IIpocTpaI-ICTBeHHOI~ FIeI~MOHHOI~ X H BI~MCI-IH t) CTaB$1T~R/]~Ba Kpacs~tX H O/~HO Ha-
qa3I~HOC yCnOBHC. B pe3ym~TaTe pe;ayral~ npH~eM
K KpaeBl,IM 3a~a~aM ~
06UK-
HOBeHIIOrO /~llqbqbepeHl/~a~soro ypaBHeHH~l, S KOTOplax Ha IICKOMy~o ~)y~
ISSN 0041-6053. Yxp. ~.aun. affptt, 1999, m. 51,1~1

142 T.M. HETECOBA
HaKJIa/I~IRaIoTC~[ TOJISKO ~Ba yC/IOBH$L OI'IHCaHHOr TaKHM
o6pa3oM TpC6OBaHHC
yMe-
HbmCH~ ~Hc~a nocTaB~cm~x ~OHOJIHHTC/IbHI~IX yC~OBHR Kpae~ofl 3aRaqH 6y~CM
Ha3HBaTb c8o~cm~934 w~apuawnnoa pei~ymcuu
KpacB~X (a HaqaJIbHHX) yCIIOBHH 3a-
~aqH, a casm KpacB~e yc~ostta
~
un6apuawnno peDyt~upye~a~va.
rlptme~eHHUe paccyx~aeuHa MOmHO CdpOpMysmpOBar~ B BH~C c~c~3notuero ymc-
p~eHam
Teope~a. ]/n.a
moeo ~mo6~ rpaeoa~ (na~a,u, no-rpaee~) za~a~,a ~tame~tamu-
~ecrotl
~u~Ku (1), (2) 6~za
unoapuaum~ pazpemu:~to~ omRocumemmo neromo-
pozo npeo@azooanu~ P, neoSxoSu~w u Oocmamo~no, wnoS~:
a) npeo@a3o~anue P npunaS/~e~aao ,~Opy ocnoon~x epynn G npeo@a3ooa-
null cucme~4b~ ypaonenu~
(1)--P c
G;
6) o ~,Dot~ mo~re pacc~ampuoae~toz] o6~acmu obmoAn,~UCb yC,~OOUJ~ unoa-
puawnnocmu
(6) u (7);
o) rpaeeb~e u (~a~a~b~b~e) yc,wou,~ (2) saOar 6b~nu unoapuaum~o pec3y~u-
pye~b~U.
3a,~e,~anue.
HOCKOabKy rpynnomott aHa~ma OCHOaaH Ha JIOma/lbHOl~ Teop~H
FpyrlH /IH rlpr TO RCHO, qTO TCXHHKa r MOYKCT 61dTb IIpHMCHHMa
/IHmb K 3a~aqaM, ~oIIycKaIOIIIHM JIOKaJIbHOO paCCMOTpeHHr (HalIpHMop, 3a~aqa
KOUIH, Fypca).
B Kaqccq3e npti~epa paccMoTpHM Haqaylbno-Kpae~yIo aa~aqy, a~n~ottty~c~ Ma-
TOMaTHqCCK0i~ M0]]OJI~IO II~I~CCCOB TOIHI0-MaCCOIICpCH0Ca B cTpaTH~t~HIJ~IpOBaHH0~
BO~Ott cpe~e
[4]:
[f(ux)Ux] x - u t = O, O ~ x < **, t > O;
(8)
u(x,0) = 0, x > 0;
: lf(Ux)Ux
Ix=0 = 0, t > 0; (9)
[ limu(x,t)
= 0, lim
[f(ux)u x] = O, t > O.
i.x "~
x --~ oo
Kaa ycrauosaetmz tmeap.atrr~ott pa3peum~ocam HOCTaBJIOHHOI~ 3a/IaqH npe~e
scero aeo6xo~o onpe~e0mTb ~po ocnoBmax rpyrm G rrpeo6pa3oaa~m~ HCXO/IHO-
ro ypa~HeHHa (8) 3a~awa.
I/IH(IDHHHTO3HMaJIbPJ:d~
onepaTop ~pynn~ G 6yReM HCKaTB B Bl4~e
X = ~x +
not
+ ;0u, (10)
r~e ~, rl . ~
-- qSyHKIItIH OT X, t,'U; ~X) ~t H ~u -- rlpOH3BO]~fla$1 rlO COOTBeTCTBylo-
~ett nepe~enHott.
Bse~aa o6omm.~etma
u x = p. u t = q, uxz = r, uxt = s. u. = l. ~a-mtne~
~TOpOe npo-
aOJL~Kerme ncxo~oro onepaTopa:
r~e npo~onxerm~e K0~l~dpHRaeHTta a a I~ JmJL~OrCa qbyammmda x, t, u, p H q,
a p, ff H X -- qbyHmm~ nepeMeHmax x, t, u, p, q, r, s, I.
Tor~a. r~exo~aa r~a ycJ~omtR mmapHaHTHOerH (6), no.uy~ae~ onpe/zeJmmmee ypae-
HCKI4e]~JLq HCKOMHXKOOp]DIHaT ~, 1] 14 ~
onepaTopa(10)
X2{[f(P)P]x
-q}l~
-
(~
+
2f~,,
+ p2;u u + ;u - 2r~x - 2~x - P~ --
- qrln)tPf'
+f] - 4, - q;u + q~x + qrl, + (~ + p;. - qqt)[rf" + rpf"] = 0.
IIoayqetmoe ypaenetme pemae~ca ~ro~o~ noc~e~o~aTeJmnoro paculermerma
cow.echo c onepanam~ 14cr~moaetm~ 14 ~clxl>epemmpoeauv~, wro n pe~y~sTaxe
rrp~omaT
x CaCTe~e
HeTp~eHa~H~X
~qb~pepeHtma.~Hux ypaBHeHHg, o6mee pe-
metme
KOT0pOg 14 oIIp~e.2IRU'W HCKOMM0 KO~]XI~HI~eHTH
onepaTopa X. A 14biermo,
ISSN 0041-6053, Y~p. ~un. ucytm, 1999, m. 51. N~I

l'~Yl'lHOBOl~ AHAJIH3 KPAEBHX 3A/~H MATEMATHHECKOfl OH3HKH 143
O~a4x
+ (a- 1 )a I , ~l
0~2a4 t + 0~2-1
= = a 2, ~ = aa4u+ (a-1)a 3.
2
CooTaeTcrsymmae aTUM KOaClaqbHmteH'raM HHqbHHHTeaaManbHUe
onepaTop~
n
onpc~e~moT Jt/Ipo
G
OCHOBHIxlX Fpyl'IIl npeo6paaosanHfl ypaBHeHng (8):
PI: ~=x+a, ~=t, ~=u;
P2: .~=x, t'=t+o~ 2, ~'=u;
P3: ~=x, ?=t, ~'= u+a;
P4 : .~=17.x, T=a2t, ~'=au.
BTopoe ycYtoBae HHSapHaHTHOCTH (7)KpaeBrax 3a~aq rIOaBOJIJteT ar.r~e~aa-s rt3
a'roro sz~pa rpyrnay npeo6paaoaaHHlt P4, OTHOCnTem,HO KOTOpOit KpaeBue ycno-
BHJ~ (9) paccMaTpHaaeMofl 3a/iaqri rmBapHaaTHra H, B TO ~Ke BpeMz, aHBaprmnTaO
pe~ytmpye~a,I. ~e~tc'rBHTem,HO, rpynna npeo6paaoBannlt P4 aazse'rcs rpynno~
Macttrra6max npeo6pa3osaHrIfl c nHBapHaHTamf:
X U
rl=~t a V=~. (11)
B~apaa,B petuerme paccMarprmaeMo~ aa~a'~n U =
u(x, t)
,aepea rmBapnanTu (11)
B BHae
U(X,
t) = xff-V(rl), .nerKo Brt~e~, vro nepBoe ri rpe~e aa ycnoBrI~ (9) aa~a-
'au rpancqbopMupy~oTCS B O~HO yc.noane ~m~ qby~KUrIH V(rl), a rIMeUHo,
lim V('q) = 0.
11--)**
Taxr~M o6pa3oM, uenrmeaHaJ~ KpaeBa.a aa~aqa (8), (9) rmaap~arrrno paapetuaMa rt
OThICKaI-IHC ee HHBapHatlTHOFO (B ~aHHOM
cnyqae
aBTOMO,/~eJIbHOFO)
petUenHa CBO-
/XHTCa K pemeHmo cne/w~omefl 3aRaqa ~ O6taKHOaeHHoro/~qbqbepem~azmHoro
ypa~Herma:
[f(V')V'] +
1/2(rlV'- V)= 0, (12)
f(V')Vln=o= Q,
lim V(ri) = 0, lim
[f(V')Vq
= 0. (13)
11-+** 1]-.-***
TeXHHKa rpyrmOBOrO aHa~43a oKa3raBaeTcJ~ yCTlemHO npHMeHHMO~ TaK~Ke npH
paCCMOTpgHHH CrI~T~HaJIbHOFO
K~Tacca 3a~aq,
B KOTOpHX
pemeHHe U nopo~aeTc~
RelllGTBHeM HeKOTOpOFO (MFHOBOHHO HJIH IIOCTO~qHHO
~I~ffTByK)III{eFO) HCTOqHHKa. B
TaKHX 3a~aqax Ha HCKOMOe pemeHHe U HaK3I~aIOTCYl/~OTIOJIHHTCJIbHbIO yCJ~OBHJL
o6ycnosnermhte 3aKOHaMH coxpaHeHHJL PaccMoTprrg MaTeMaTH'4ecKy~O Mo/~e.rn, rrpo-
~ccca
BO3HHKHOBeHHR 3~IeKTpOMarHHTHOFO TIOYIJt
B
dpeppoMar~HTHOfl cpenr (j = (~E,
D = ~E, B = bH ~/n,
n > 1 ) nor ~eltCTBHeM II~OCKOFO HYlH ToqeqHOFO HCTOqHHKa
~YleKTpOMarHHTHOfl
3HepFHH HHTeHCHBHOGTH
Wu(t )
[5]:
1 t,,~H. ~ b~HO-")/nHt
= 0, k = 1, 2, 3; (14)
I'~
e/e- n
n(e,0) = 0, n(o., t) = 0, (Okno)e = 0; (i5)
,~ n+l t ** t
bo, fHTO,_~dO +
O_.k~
~dt
fHgdO-
~Wu(t)dt.
(16)
n+l ~ o
0 0 0 0
,~][po OCHOBH/~X
l"pyllH G npeo6pa~osaHHit ypaBHeH~ (14) npe~eramaaeTCg npeo6-
pa~olmmla~a:
: w ~=at, "g=H;
1'2: "O -" a-b/2o, ~ = t,
HfoJ-/;
P3: w /'=t, ~=H.
ISSN 0041-6053.
Yrp. ~tam. ~yp..,
1999, m. 51,1~1

144 T.M. HETECOBA
Ecm~ cmwravb, qTO
HHTeHCHBHOCTb
HC'rOqHtIKa
Wu(t) --
cTeneHHa~I
qbyHKI~HZ,
T.e. W=(t) =
pwt/'-l,
TO paccMaTptmaeMa~ 3a~a~a (14)-(16) 6y~eT nHBapHanTnO
pa3pemHMott oTuocIcrem,HO rpynnu npeo6pa3osam~tt
c! -be 2
P = ClP 1 + c2P2: 0=iX 2 0, [=o~Ctt, H=t~C2H, (17)
r]]c
c 1 H
c 2-
npOn3SO.rlbH~r
nOCTO~HH~C.
~cttcTstrreJmno, BI~a3HB pcmeHHe H(O, t) qcpr HI-mapHanTu V H Z I
H(0, t) = tmv(TI), 11 =
02/t l, m = c2/c 1, l = 1-bc2/cr
(18)
H
HO]ICTaBHB B HCXO]~IOC
ypaBHCHHr H
yCJIOBH.q
(15), (16),
nony, mM peI1ylJ~IpoBalIHyIo
3a~aqy
/
v(oo) = o, =0, (20)
\ :TI=0
:|_b.fVn 2d + =w:. (2,)
~Po 03
H3 paseHcrs (20) c~e~yer, ,fro HaqaJmHo-zpaeBa~ 3a~aqa (14)--(16) 6yA~r vraBa-
pHa~rrno pa3pemm~oft OTHOCnTeJZbHO rpynnu Macurra6aux npeo6pa3oBaHHR (17)
npH yc~oamt
p = 2m + 1 + (k + 1 )l / 2, o~y~Ia c 1 = c 2 H
pemCHHe ee CaO~TCZ
K
pcmcemo tpaesott aa~amt (19) - (2I).
BO3MO)F~0CT~ nptIMeUeHH~ TeX~m~ n MeTOAOB rpynnosoro aHa.rIH3a rlpH p~IIIe-
Hm~
zpacmax aajzaq ~o Hac'rosmero Spe~CUH OKOH'4aTCJZI~HO CmC
He
OUCHellbl. Haps-
]~y c ~)aKTOM yrrpomenns HCXO~OI~ 3a~aqH rlyTcM rlOIII4_3KeHH.~ nop~za ypaBHCHH~I
no~mn~eTCS HC06X0]~IMOCTb B ~OHOJ-IHHTeJ'II=HOM HCCJ'IC/~0BaHHH BOHpOCOB Cyl~CCTBO-
BaHH~I H IlOHCKa pr pcAyI~OBOHHO~t 3a~aHH. ~OIIOJIHHTr HCCJIr
HH~I Tpe6ymT TaKH~.r H rlo~lyHaeMI~r HHBapHaHTH~C p~l.I.ICHHSI Ha IlpeKM~I" HX (~H3H-
qe,~KOrO CMI~C./la H yc'roRqHBOCTti.
B o6meM
cJ~yqac rpynnoBott
aHSJIH3 RBJ-L~eTC~I
annapaToM, ]~atouiabl Jn~ub MaTeMaT~qeCKOe pemeHHC 3a~a~ MaTCMaTIIqCCKOI~ QbH-
H ~0Y~r 6blTb rlpHMeHeH npn nOCTpOeHHH d~yH~aMeHTaX~bH0tt biaTe~aT~qeczott
TCOpI414 KpaeshlX 3a]laq
blaTeldaTHqeCKOR
d~)H3HKH.
I. Osc~uroe ./I. 8.
rpynnoaott aHa~n3 n~qbqbepeHuna~bHUX ypaaHeHHlt. -- M.: Hayza, 1978. -
400c.
2. Me~btauros B. M. 0
HenpepUBHO~ conps)ZCH~H ,neapaaH~nux pemeum~//]~Ha~Ka cnaom-
HOlt cpe~u. - 1972. - B~n. I0. - C. 70 - 84.
3, Ilyx~aqee B.B.
HeycTaHOe,ameec~ aaHxetme ~aazolt )Z~KOC~4 co ceo6o/molt rpaHuttetl, orm-
ct~aeM~xe qaffrHqHO-HHBapHaHTHMMH petuenHaMtt ypaBneHti~l HaBbe -- CToKca II TaM ~Ke. --
1972.-B~n. I0.-C. 125- 137.
4. Kepe'~oecruti A. A., Hemecoea T. M. AB'robloAedlbnue pememt~ aa/taqu onpecHeHtL~ t4OpCKI4X BO/I
//Teope'mqecKae H
npaz~a~n~e
aonpocu/~di~pcnmta.n~nux ypalmennlt a a~re6pa.
-
K~eB:
Hayz./13n4Ka, 1978. -C. 41-46.
5. ~epe~oecruii A. A.
JIexu~, no aeJltlneltHldl~l xpacsldM 3a/laqabl MaTeMaTHtleCKOlt diattatIKtt, q. II.
- KHea: HH-T
~aTe~aTmo! AH YCCP, 1974.
-
282 c.
l'lo~yqe.o
18.04.97
I$SN 0041-6053. Yrp,
~m.
~.'vps., 1999 , m. 51, N el
Citations
More filters

MonographDOI
Palle E. T. Jorgensen1Institutions (1)
30 Oct 2018-

4 citations


Journal Article
TL;DR: The algorithm for the hydraulic calculation of the ring network with 2 access nodes and several concentrated selections in the nodes has been worked out and ensures an accurate decision and identifies the reasons for poor coordination.
Abstract: The algorithm for the hydraulic calculation of the ring network with 2 access nodes and several concentrated selections in the nodes has been worked out. This method ensures an accurate decision and identifies the reasons for poor coordination.

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20181
20121