scispace - formally typeset
Search or ask a question

Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures

TL;DR: The Emerging Technology Series as mentioned in this paper is a series of information and recommendations based on available test data, technical reports, limited experience with field applications, and the opinions of committee members, with a focus on the development and appropriate use of new and emerging technologies.
Abstract: *Co-chairs of the subcommittee that prepared this document. Note: The committee acknowledges the contribution of associate member Paul Kelley. ACI encourages the development and appropriate use of new and emerging technologies through the publication of the Emerging Technology Series. This series presents information and recommendations based on available test data, technical reports, limited experience with field applications, and the opinions of committee members. The presented information and recommendations, and their basis, may be less fully developed and tested than those for more mature technologies. This report identifies areas in which information is believed to be less fully developed, and describes research needs. The professional using this document should understand the limitations of this document and exercise judgment as to the appropriate application of this emerging technology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors discuss the development of the advanced polymer composite material applications in the building and civil/structural infrastructure over the past three to four decades and highlight the important in-service research areas which are necessary to improve the understanding of the behavior of FRP materials and FRP structural components.

946 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a critical review of existing research in this area, identifies gaps of knowledge, and outlines directions for further research, including the optimization of construction details, models for the bond behaviour between NSM fiber-reinforced polymer (FRP) and concrete, reliable design methods for flexural and shear strengthening, and the maximization of the advantages of this technique.
Abstract: Near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement is one of the latest and most promising strengthening techniques for reinforced concrete (RC) structures. Research on this topic started only a few years ago but has by now attracted worldwide attention. Issues raised by the use of NSM FRP reinforcement include the optimization of construction details, models for the bond behaviour between NSM FRP and concrete, reliable design methods for flexural and shear strengthening, and the maximization of the advantages of this technique. This paper provides a critical review of existing research in this area, identifies gaps of knowledge, and outlines directions for further research.

725 citations

Journal ArticleDOI
TL;DR: More accurate expressions for the ultimate axial strain and the compressive strength are proposed for use in this model in this paper, which can be easily incorporated into Lam and Teng's model for more accurate predictions.
Abstract: This paper presents the results of a recent study conducted to refine the design-oriented stress–strain model originally proposed by Lam and Teng for fiber-reinforced polymer (FRP)-confined concrete under axial compression. More accurate expressions for the ultimate axial strain and the compressive strength are proposed for use in this model. These new expressions are based on results from recent tests conducted by the writers’ group under well-defined conditions and on results from a parametric study using an accurate analysis-oriented stress–strain model for FRP-confined concrete. They allow the effects of confinement stiffness and the jacket strain capacity to be separately reflected and accounts for the effect of confinement stiffness explicitly instead of having it reflected only through the confinement ratio. The new expressions can be easily incorporated into Lam and Teng’s model for more accurate predictions. Based on these new expressions, two modified versions of Lam and Teng’s model are present...

437 citations

Journal ArticleDOI
TL;DR: A review of the progress achieved in this area regarding applications to both reinforced concrete and steel members is provided in this paper, where the potential of brittle debonding failures is considered in the design process.

412 citations

Journal ArticleDOI
TL;DR: In this article, a stress-strain model for concrete confined by fiber reinforced polymer (FRP) composites is developed, based on the results of a comprehensive experimental program including large-scale circular, square and rectangular short columns confined by carbon/epoxy and E-glass/polyethylene (E-glass) jackets providing a wide range of confinement ratios.
Abstract: In this paper, a stress–strain model for concrete confined by fiber reinforced polymer (FRP) composites is developed. The model is based on the results of a comprehensive experimental program including large-scale circular, square and rectangular short columns confined by carbon/epoxy and E-glass/epoxy jackets providing a wide range of confinement ratios. Ultimate stress, rupture strain, jacket parameters, and cross-sectional geometry were found to be significant factors affecting the stress–strain behavior of FRP-confined concrete. Such parameters were analyzed statistically based on the experimental data, and equations to theoretically predict these parameters are presented. Experimental results from this study were compared to the proposed semi-empirical model as well as others from the literature.

362 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a stress-strain model for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement is developed for concrete sections with either spiral or circular hoops, or rectangular hoops with or without supplementary cross ties.
Abstract: A stress‐strain model is developed for concrete subjected to uniaxial compressive loading and confined by transverse reinforcement. The concrete section may contain any general type of confining steel: either spiral or circular hoops; or rectangular hoops with or without supplementary cross ties. These cross ties can have either equal or unequal confining stresses along each of the transverse axes. A single equation is used for the stress‐strain equation. The model allows for cyclic loading and includes the effect of strain rate. The influence of various types of confinement is taken into account by defining an effective lateral confining stress, which is dependent on the configuration of the transverse and longitudinal reinforcement. An energy balance approach is used to predict the longitudinal compressive strain in the concrete corresponding to first fracture of the transverse reinforcement by equating the strain energy capacity of the transverse reinforcement to the strain energy stored in the concret...

6,261 citations

MonographDOI
27 Mar 1992
TL;DR: In this paper, the causes and effects of earthquakes: Seismicity, Structural Response, Seismic Action, and Seismical Action in Member Design principles of member design.
Abstract: Causes and Effects of Earthquakes: Seismicity--Structural Response--Seismic Action. Principles of Member Design. Reinforced Concrete Ductile Frames. Structural Walls. Dual Systems. Masonry Structures. Reinforced Concrete Buildings with Restricted Ductility. Foundation Structures. Appendices. Symbols. References. Index.

3,086 citations

Book
29 Mar 1996
TL;DR: In this article, the authors focus on designing adequate displacement and ductility capacity into new bridges, with less significance placed on strength, where a strength hierarchy is established in a bridge to ensure that damage is controllable and occurs only where the designer intends.
Abstract: This book should be of interest to practicing bridge designers and researchers investigating the seismic design of bridges It is appropriate for graduate courses or upper level undergraduate courses in seismic design of bridges The approach relies heavily on the principles of capacity design, where a strength hierarchy is established in a bridge to ensure that damage is controllable and occurs only where the designer intends This approach, which is well established for seismic design of buildings, has been extended and modified to reflect the special demands and characteristics of bridges Particular emphasis is placed on designing adequate displacement and ductility capacity into new bridges, with less significance placed on strength The book is developed around two alternative design strategies: the traditional force-based approach where force levels are related to acceleration spectra, with checks to ensure adequate displacement capacity exists, and the newer displacement-based design approach, where displacements are the starting point in the design Introductory chapters discuss design philosophy and its impact on the performance of bridges in recent earthquakes, seismicity and soils effects, including liquefaction, in a form facilitating understanding by structural engineers, and the importance of rational consideration, from a seismic design viewpoint, of the various structural configuration possibilities in the conceptual design phase Extensive discussion of analysis is provided in Chapter 4, with emphasis on the importance of realistic modeling assumptions and appropriate choice of analytical tools Chapters 5 to 8 provide detailed information on the design of new bridges and the assessment and retrofit of existing bridges A separate chapter is devoted to design and retrofit using seismic isolation and dissipation devices Many design and analysis examples, some quite extensive in scope, are included Design aids in the form of charts and tables are also provided An index is provided

1,683 citations

Journal ArticleDOI
TL;DR: A concise state-of-the-art survey of fiber-reinforced polymer composites for construction applications in civil engineering is presented in this article, which includes a historical review, the current state of the art, and future challenges.
Abstract: A concise state-of-the-art survey of fiber-reinforced polymer (also known as fiber-reinforced plastic) composites for construction applications in civil engineering is presented. The paper is organized into separate sections on structural shapes, bridge decks, internal reinforcements, externally bonded reinforcements, and standards and codes. Each section includes a historical review, the current state of the art, and future challenges.

1,367 citations

01 Jan 2003
TL;DR: A concise state-of-the-art survey of fiber-reinforced polymer composites for construction applications in civil engineering is presented in this article, which includes a historical review, the current state of the art, and future challenges.
Abstract: A concise state-of-the-art survey of fiber-reinforced polymer (also known as fiber-reinforced plastic) composites for construction applications in civil engineering is presented. The paper is organized into separate sections on structural shapes, bridge decks, internal reinforcements, externally bonded reinforcements, and standards and codes. Each section includes a historical review, the current state of the art, and future challenges.

1,362 citations