scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering

01 Aug 2011-Journal of Biomedical Materials Research Part B (Wiley Subscription Services, Inc., A Wiley Company)-Vol. 98, Iss: 2, pp 379-386
TL;DR: The SEM and immunocytochemical analysis showed that the aligned PG scaffold greatly promoted cell attachment and alignment because of the biological components and ordered topography of the scaffolds, which concluded that thealigned PG nanofibrous scaffolds could be more promising substrates suitable for the regeneration of infarct myocardium and other cardiac defects.
Abstract: Cardiac tissue engineering (TE) is one of the most promising strategies to reconstruct the infarct myocardium and the major challenge involves producing a bioactive scaffold with anisotropic properties that assist in cell guidance to mimic the heart tissue. In this study, random and aligned poly(e-caprolactone)/gelatin (PG) composite nanofibrous scaffolds were electrospun to structurally mimic the oriented extracellular matrix (ECM). Morphological, chemical and mechanical properties of the electrospun PG nanofibers were evaluated by scanning electron microscopy (SEM), water contact angle, attenuated total reflectance Fourier transform infrared spectroscopy and tensile measurements. Results indicated that PG nanofibrous scaffolds possessed smaller fiber diameters (239 ± 37 nm for random fibers and 269 ± 33 nm for aligned fibers), increased hydrophilicity, and lower stiffness compared to electrospun PCL nanofibers. The aligned PG nanofibers showed anisotropic wetting characteristics and mechanical properties, which closely match the requirements of native cardiac anisotropy. Rabbit cardiomyocytes were cultured on electrospun random and aligned nanofibers to assess the biocompatibility of scaffolds, together with its potential for cell guidance. The SEM and immunocytochemical analysis showed that the aligned PG scaffold greatly promoted cell attachment and alignment because of the biological components and ordered topography of the scaffolds. Moreover, we concluded that the aligned PG nanofibrous scaffolds could be more promising substrates suitable for the regeneration of infarct myocardium and other cardiac defects. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2011.
Citations
More filters
Journal ArticleDOI
TL;DR: Current strategies to develop advanced nan ofibrous polymer-based scaffolds via electrospinning, their applications in regenerating human musculoskeletal tissues, and the use of polymer nanofibers to deliver growth factors or small molecules for regenerative medicine are summarized.

381 citations

Journal ArticleDOI
07 Jun 2017-ACS Nano
TL;DR: This work presents a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure and demonstrates their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering.
Abstract: Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and i...

355 citations

Journal ArticleDOI
TL;DR: The authors provide an insight into the recent developments and challenges of PCL-based biomaterials as a critical component of new therapeutic strategies for many diseases.
Abstract: Recently, poly (є-caprolactone) (PCL) has gained a lot of attention, and shown great potential in biomedical applications. Among synthetic polymers, PCL is one of the easiest to process and manipulate into a large range of shapes and sizes due to its low melting temperature and its superior viscoelastic properties. In this review article the authors focus mainly on the properties of PCL-based biomaterials relevant to drug delivery and tissue engineering applications. The authors provide an insight into the recent developments and challenges of PCL-based biomaterials as a critical component of new therapeutic strategies for many diseases.

341 citations

Journal ArticleDOI
TL;DR: The article assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay, and the basic theory and parameters of nan ofibers fabrication are introduced.

298 citations

Journal ArticleDOI
TL;DR: The present review aims to provide an in-depth understanding of the promising role and the practical region of applicability of electrospinning in tissue engineering and regenerative medicine by highlighting the outcomes of the most recent studies performed in this field.

292 citations

References
More filters
Journal ArticleDOI
TL;DR: Electrospinning is examined by providing a brief description of the theory behind the process, examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.
Abstract: Interest in electrospinning has recently escalated due to the ability to produce materials with nanoscale properties. Electrospun fibers have been investigated as promising tissue engineering scaffolds since they mimic the nanoscale properties of native extracellular matrix. In this review, we examine electrospinning by providing a brief description of the theory behind the process, examining the effect of changing the process parameters on fiber morphology, and discussing the potential applications and impacts of electrospinning on the field of tissue engineering.

2,175 citations

Journal ArticleDOI
TL;DR: The aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering after being evaluated in vitro using neural stem cells as a model cell line.

1,764 citations

Journal ArticleDOI
TL;DR: PCL/gelatin 70:30 nanofiber was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells and proved to be a promising biomaterial suitable for nerve regeneration.

1,010 citations

Journal ArticleDOI
TL;DR: This study proposes a cost-effective composite consisting of a nanofibrous scaffold directly electrospun onto a polyurethane dressing (Tegaderm, 3M Medical) - which it is called the Tegaderm-nanofiber (TG-NF) construct - for dermal wound healing.

802 citations

Journal ArticleDOI
TL;DR: Accordion-like honeycombs can overcome principal structural-mechanical limitations of previous scaffolds, promoting the formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.
Abstract: Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (p<0.05); and (3) greater heart cell alignment (p<0.0001) than isotropic control scaffolds. Prototype bilaminar scaffolds with 3D interconnected pore networks yielded electrically excitable grafts with multi-layered neonatal rat heart cells. Accordion-like honeycombs can thus overcome principal structural–mechanical limitations of previous scaffolds, promoting the formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium. Construction of tissue-engineering scaffolds that mimic cardiac anisotropy is a challenge. Now, accordion-like honeycomb scaffolds have been created that can form tissue grafts with preferentially aligned heart cells, and with mechanical properties that closely resemble the anisotropy of native myocardium.

798 citations