scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

08 Feb 2021-Autophagy (Landes Bioscience)-Vol. 17, Iss: 1, pp 1-382
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Citations
More filters
Journal ArticleDOI
University of Michigan1, Cornell University2, University of Pennsylvania3, University of Massachusetts Medical School4, University of Naples Federico II5, Baylor College of Medicine6, Spanish National Research Council7, Complutense University of Madrid8, New York University9, Boston Children's Hospital10, University of Rome Tor Vergata11, NewYork–Presbyterian Hospital12, University of Pittsburgh13, University of Paris14, French Institute of Health and Medical Research15, National University of Cuyo16, Albert Einstein College of Medicine17, University of New Mexico18, Goethe University Frankfurt19, Weizmann Institute of Science20, University of Turku21, Sapienza University of Rome22, Virginia Commonwealth University23, St. Jude Children's Research Hospital24, Discovery Institute25, University of Copenhagen26, University of Tromsø27, Eötvös Loránd University28, Merck & Co.29, University of Freiburg30, Babraham Institute31, University of South Australia32, University of Adelaide33, University of Oviedo34, University of Chicago35, University of Graz36, National Institutes of Health37, City University of New York38, Queens College39, University of Tokyo40, University of Zurich41, University of British Columbia42, Austrian Academy of Sciences43, University of California, San Francisco44, Russian Academy of Sciences45, University Medical Center Groningen46, University of Cambridge47, University of Glasgow48, Rutgers University49, University of Padua50, Kazan Federal University51, University of Bern52, University of Oxford53, Oslo University Hospital54, University of Oslo55, Foundation for Research & Technology – Hellas56, University of Crete57, Francis Crick Institute58, Osaka University59, Harvard University60, Chinese Academy of Sciences61, Icahn School of Medicine at Mount Sinai62, Shanghai Jiao Tong University63, Karolinska Institutet64
TL;DR: In this paper, preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.
Abstract: Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19. Viruses manipulate host cell pathways to support infection. Here the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.

140 citations

Journal ArticleDOI
TL;DR: The role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, was discussed in this article.
Abstract: Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target. The cellular consequences of dysfunctional autophagy contribute to numerous diseases. In this Review, Kitada and Koya consider the relationship between impaired autophagy and age-related metabolic derangements, including insulin resistance, type 2 diabetes mellitus and sarcopenic obesity, and discuss candidate autophagy-based therapies.

109 citations

Journal ArticleDOI
TL;DR: In this article, the authors systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 pandemic. How SARS-CoV-2 regulates cellular responses to escape clearance by host cells is unknown. Autophagy is an intracellular lysosomal degradation pathway for the clearance of various cargoes, including viruses. Here, we systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes. ORF3a colocalized with lysosomes and interacted with VPS39, a component of the homotypic fusion and protein sorting (HOPS) complex. The ORF3a-VPS39 interaction prohibited the binding of HOPS with RAB7, which prevented the assembly of fusion machinery, leading to the accumulation of unfused autophagosomes. These results indicated the potential mechanism by which SARS-CoV-2 escapes degradation; that is, the virus interferes with autophagosome-lysosome fusion. Furthermore, our findings will facilitate strategies targeting autophagy for conferring potential protection against the spread of SARS-CoV-2.

106 citations

Journal ArticleDOI
TL;DR: The latest advances in the understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death are outlined, which may shed light on new targets for therapeutic interventions.
Abstract: Cell death and immune response are at the core of life. In past decades, the endoplasmic reticulum (ER) protein STING1 (also known as STING or TMEM173) was found to play a fundamental role in the production of type I interferons (IFNs) and pro-inflammatory cytokines in response to DNA derived from invading microbial pathogens or damaged hosts by activating multiple transcription factors. In addition to this well-known function in infection, inflammation, and immunity, emerging evidence suggests that the STING1-dependent signaling network is implicated in health and disease by regulating autophagic degradation or various cell death modalities (e.g., apoptosis, necroptosis, pyroptosis, ferroptosis, mitotic cell death, and immunogenic cell death [ICD]). Here, we outline the latest advances in our understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death, which may shed light on new targets for therapeutic interventions.

78 citations

References
More filters
Journal ArticleDOI
TL;DR: CaMKK2 is identified as a component of one of the pathways by which ghrelin and leptin signal to AMPK in hypothalamic neurons and lead to regulation of appetite and glucose homeostasis, and it is demonstrated that it forms a unique signaling complex with AMPKalpha and beta.

341 citations

Journal ArticleDOI
TL;DR: In this article, the p53-inducible TIGAR protein functions as a fructose-2,6-bisphosphatase, promoting the pentose phosphate pathway and helping to lower intracellular reactive oxygen species (ROS).
Abstract: The p53-inducible TIGAR protein functions as a fructose-2,6-bisphosphatase, promoting the pentose phosphate pathway and helping to lower intracellular reactive oxygen species (ROS). ROS functions in the regulation of many cellular responses, including autophagy—a response to stress conditions such as nutrient starvation and metabolic stress. In this study, we show that TIGAR can modulate ROS in response to nutrient starvation or metabolic stress, and functions to inhibit autophagy. The ability of TIGAR to limit autophagy correlates strongly with the suppression of ROS, with no clear effects on the mTOR pathway, and is p53 independent. The induction of autophagy in response to loss of TIGAR can function to moderate apoptotic response by restraining ROS levels. These results reveal a complex interplay in the regulation of ROS, autophagy and apoptosis in response to TIGAR expression, and shows that proteins similar to TIGAR that regulate glycolysis can have a profound effect on the autophagic response through ROS regulation.

341 citations

Journal ArticleDOI
TL;DR: The noncatalytic RabGAP protein TBC1D14 regulates the Rab11- and ULK1-positive recycling endosomes required for autophagosome formation upon starvation.
Abstract: Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain–containing Rab guanosine triphosphatase–activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)–positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.

340 citations

Journal ArticleDOI
TL;DR: Results indicate that two related but distinct autophagy-like processes are involved in both biogenesis of vacuolar resident proteins and sequestration of substrates to be degraded.
Abstract: Stress conditions lead to a variety of physiological responses at the cellular level. Autophagy is an essential process used by animal, plant, and fungal cells that allows for both recycling of macromolecular constituents under conditions of nutrient limitation and remodeling the intracellular structure for cell differentiation. To elucidate the molecular basis of autophagic protein transport to the vacuole/lysosome, we have undertaken a morphological and biochemical analysis of this pathway in yeast. Using the vacuolar hydrolase aminopeptidase I (API) as a marker, we provide evidence that the autophagic pathway overlaps with the biosynthetic pathway, cytoplasm to vacuole targeting (Cvt), used for API import. Before targeting, the precursor form of API is localized mostly in restricted regions of the cytosol as a complex with spherical particles (termed Cvt complex). During vegetative growth, the Cvt complex is selectively wrapped by a membrane sac forming a double membrane-bound structure of approximately 150 nm diam, which then fuses with the vacuolar membrane. This process is topologically the same as macroautophagy induced under starvation conditions in yeast (Baba, M., K. Takeshige, N. Baba, and Y. Ohsumi. 1994. J. Cell Biol. 124:903-913). However, in contrast with autophagy, API import proceeds constitutively in growing conditions. This is the first demonstration of the use of an autophagy-like mechanism for biosynthetic delivery of a vacuolar hydrolase. Another important finding is that when cells are subjected to starvation conditions, the Cvt complex is now taken up by an autophagosome that is much larger and contains other cytosolic components; depending on environmental conditions, the cell uses an alternate pathway to sequester the Cvt complex and selectively deliver API to the vacuole. Together these results indicate that two related but distinct autophagy-like processes are involved in both biogenesis of vacuolar resident proteins and sequestration of substrates to be degraded.

339 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that PARL cleaves human Pink1, which is implicated in Parkinson's disease, within its conserved membrane anchor, leading to accumulation of the Pink1 precursor.
Abstract: Intramembrane proteolysis is a conserved mechanism that regulates a variety of cellular processes ranging from transcription control to signaling. In mitochondria, the inner membrane rhomboid protease PARL has been implicated in the control of life span and apoptosis by a so far uncharacterized mechanism. Here, we show that PARL cleaves human Pink1, which is implicated in Parkinson's disease, within its conserved membrane anchor. Mature Pink1 is then free to be released into the cytosol or the mitochondrial intermembrane space. Upon depolarization of the mitochondrial membrane potential, the canonical import of Pink1 and PARL-catalyzed processing is blocked, leading to accumulation of the Pink1 precursor. As targeting of this precursor to the outer mitochondrial membrane has been shown to trigger mitophagy, we suggest that the PARL-catalyzed removal of the Pink1 signal sequence in the canonical import pathway acts as a cellular checkpoint for mitochondrial integrity. Furthermore, we show that two Parkinson's disease-causing mutations decrease the processing of Pink1 by PARL, with attendant implications for pathogenesis.

338 citations

Trending Questions (2)
How long does it take for body to reach autophagy?

Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms.

What does autophagy do Reddit?

Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway.