scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

08 Feb 2021-Autophagy (Landes Bioscience)-Vol. 17, Iss: 1, pp 1-382
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Citations
More filters
Journal ArticleDOI
University of Michigan1, Cornell University2, University of Pennsylvania3, University of Massachusetts Medical School4, University of Naples Federico II5, Baylor College of Medicine6, Spanish National Research Council7, Complutense University of Madrid8, New York University9, Boston Children's Hospital10, University of Rome Tor Vergata11, NewYork–Presbyterian Hospital12, University of Pittsburgh13, University of Paris14, French Institute of Health and Medical Research15, National University of Cuyo16, Albert Einstein College of Medicine17, University of New Mexico18, Goethe University Frankfurt19, Weizmann Institute of Science20, University of Turku21, Sapienza University of Rome22, Virginia Commonwealth University23, St. Jude Children's Research Hospital24, Discovery Institute25, University of Copenhagen26, University of Tromsø27, Eötvös Loránd University28, Merck & Co.29, University of Freiburg30, Babraham Institute31, University of South Australia32, University of Adelaide33, University of Oviedo34, University of Chicago35, University of Graz36, National Institutes of Health37, City University of New York38, Queens College39, University of Tokyo40, University of Zurich41, University of British Columbia42, Austrian Academy of Sciences43, University of California, San Francisco44, Russian Academy of Sciences45, University Medical Center Groningen46, University of Cambridge47, University of Glasgow48, Rutgers University49, University of Padua50, Kazan Federal University51, University of Bern52, University of Oxford53, Oslo University Hospital54, University of Oslo55, Foundation for Research & Technology – Hellas56, University of Crete57, Francis Crick Institute58, Osaka University59, Harvard University60, Chinese Academy of Sciences61, Icahn School of Medicine at Mount Sinai62, Shanghai Jiao Tong University63, Karolinska Institutet64
TL;DR: In this paper, preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.
Abstract: Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19. Viruses manipulate host cell pathways to support infection. Here the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.

140 citations

Journal ArticleDOI
TL;DR: The role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, was discussed in this article.
Abstract: Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target. The cellular consequences of dysfunctional autophagy contribute to numerous diseases. In this Review, Kitada and Koya consider the relationship between impaired autophagy and age-related metabolic derangements, including insulin resistance, type 2 diabetes mellitus and sarcopenic obesity, and discuss candidate autophagy-based therapies.

109 citations

Journal ArticleDOI
TL;DR: In this article, the authors systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 pandemic. How SARS-CoV-2 regulates cellular responses to escape clearance by host cells is unknown. Autophagy is an intracellular lysosomal degradation pathway for the clearance of various cargoes, including viruses. Here, we systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes. ORF3a colocalized with lysosomes and interacted with VPS39, a component of the homotypic fusion and protein sorting (HOPS) complex. The ORF3a-VPS39 interaction prohibited the binding of HOPS with RAB7, which prevented the assembly of fusion machinery, leading to the accumulation of unfused autophagosomes. These results indicated the potential mechanism by which SARS-CoV-2 escapes degradation; that is, the virus interferes with autophagosome-lysosome fusion. Furthermore, our findings will facilitate strategies targeting autophagy for conferring potential protection against the spread of SARS-CoV-2.

106 citations

Journal ArticleDOI
TL;DR: The latest advances in the understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death are outlined, which may shed light on new targets for therapeutic interventions.
Abstract: Cell death and immune response are at the core of life. In past decades, the endoplasmic reticulum (ER) protein STING1 (also known as STING or TMEM173) was found to play a fundamental role in the production of type I interferons (IFNs) and pro-inflammatory cytokines in response to DNA derived from invading microbial pathogens or damaged hosts by activating multiple transcription factors. In addition to this well-known function in infection, inflammation, and immunity, emerging evidence suggests that the STING1-dependent signaling network is implicated in health and disease by regulating autophagic degradation or various cell death modalities (e.g., apoptosis, necroptosis, pyroptosis, ferroptosis, mitotic cell death, and immunogenic cell death [ICD]). Here, we outline the latest advances in our understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death, which may shed light on new targets for therapeutic interventions.

78 citations

References
More filters
Journal ArticleDOI
TL;DR: The present communication reports the first results of a quantitative morphological study correlating the appearance of autophagic vacuoles with a marked decrease in the number of recognizable dense bodies present in particulate fractions separated from hepatic homogenates 45 min after glucagon injection.
Abstract: Numerous observations made over the last five years have established the widespread occurrence of cellular autophagy as well as its importance in the processes whereby living cells achieve the degradation of their own constituents (For a review, see reference 5). In all the cases that have been investigated in this respect, autophagic vacuoles have been found to stain positively for acid phosphatase, suggesting strongly that lysosomal enzymes are the main agents of the digestive processes taking place within them. However, the mechanism of the segregation phenomenon and the manner in which hydrolases become associated with the sequestered area are still far from being understood. One theory, proposed by Novikoff et al. (9), considers areas of endoplasmic reticulum, assumed to be involved in the intracellular transport of newly synthesized hydrolases, as providing both the surrounding membrane of autophagic vacuoles and their enzymic complement. According to this theory, cellular autophagy represents a mechanism, though not necessarily the only one, whereby new lysosomes may arise in a living cell. Other workers have expressed similar ideas concerning the origin of lysosomes (1, 8). An alternative hypothesis, put forward by de Duve and Wattiaux (5), considers preexisting lysosomes as the source of the enzymes that are found in autophagic vacuoles, on the assumption, either that the particles actually participate in the sequestration phenomenon, or that they fuse with initially hydrolase-less \"autophagosomes\" as they are known to do with the \"heterophagosomes\" formed by endocytosis. In a recent investigation, Deter and de Duve (7) have found that the injection of a large dose of glucagon, a powerful inducer of autophagy in liver, causes a transient, but manifest increase in the mechanical and osmotic fragility and in the median sedimentation coefficient of rat-liver lysosomes. These changes were tentatively attributed to an enlargement of the lysosomes, possibly reflecting extensive participation of these particles in the autophagic process. But in the absence of morphological data, no firm conclusion could be reached. The present communication reports the first results of a quantitative morphological study correlating the appearance of autophagic vacuoles with a marked decrease in the number of recognizable dense bodies present in particulate fractions separated from hepatic homogenates 45 min after glucagon injection.

326 citations

Journal ArticleDOI
TL;DR: Bcl2-L-13 induces mitochondrial fragmentation in the absence of Drp1, while it induces mitophagy in Parkin-deficient cells and offers insights into mitochondrial quality control in mammalian cells.
Abstract: Damaged mitochondria are removed by mitophagy. Although Atg32 is essential for mitophagy in yeast, no Atg32 homologue has been identified in mammalian cells. Here, we show that Bcl-2-like protein 13 (Bcl2-L-13) induces mitochondrial fragmentation and mitophagy in mammalian cells. First, we hypothesized that unidentified mammalian mitophagy receptors would share molecular features of Atg32. By screening the public protein database for Atg32 homologues, we identify Bcl2-L-13. Bcl2-L-13 binds to LC3 through the WXXI motif and induces mitochondrial fragmentation and mitophagy in HEK293 cells. In Bcl2-L-13, the BH domains are important for the fragmentation, while the WXXI motif facilitates mitophagy. Bcl2-L-13 induces mitochondrial fragmentation in the absence of Drp1, while it induces mitophagy in Parkin-deficient cells. Knockdown of Bcl2-L-13 attenuates mitochondrial damage-induced fragmentation and mitophagy. Bcl2-L-13 induces mitophagy in Atg32-deficient yeast cells. Induction and/or phosphorylation of Bcl2-L-13 may regulate its activity. Our findings offer insights into mitochondrial quality control in mammalian cells.

325 citations

Journal ArticleDOI
TL;DR: “mito-QC,” a transgenic mouse containing a pH-sensitive fluorescent mitochondrial signal, allowing in vivo detection of mitophagy and mitochondrial morphology at single-cell resolution, is presented.
Abstract: Autophagic turnover of mitochondria, termed mitophagy, is proposed to be an essential quality-control (QC) mechanism of pathophysiological relevance in mammals. However, if and how mitophagy proceeds within specific cellular subtypes in vivo remains unclear, largely because of a lack of tractable tools and models. To address this, we have developed “mito-QC,” a transgenic mouse with a pH-sensitive fluorescent mitochondrial signal. This allows the assessment of mitophagy and mitochondrial architecture in vivo. Using confocal microscopy, we demonstrate that mito-QC is compatible with classical and contemporary techniques in histochemistry and allows unambiguous in vivo detection of mitophagy and mitochondrial morphology at single-cell resolution within multiple organ systems. Strikingly, our model uncovers highly enriched and differential zones of mitophagy in the developing heart and within specific cells of the adult kidney. mito-QC is an experimentally advantageous tool of broad relevance to cell biology researchers within both discovery-based and translational research communities.

325 citations

Journal ArticleDOI
TL;DR: A novel link between two highly important and rapidly growing research fields is established and a new role for miR‐101 is presented as a key regulator of autophagy, which can sensitize breast cancer cells to 4‐hydroxytamoxifen (4‐OHT)‐mediated cell death.
Abstract: Autophagy is an evolutionarily conserved mechanism of cellular self-digestion in which proteins and organelles are degraded through delivery to lysosomes. Defects in this process are implicated in numerous human diseases including cancer. To further elucidate regulatory mechanisms of autophagy, we performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition of autophagy, indicating a functional importance for this target. Finally, we show that miR-101-mediated inhibition of autophagy can sensitize breast cancer cells to 4-hydroxytamoxifen (4-OHT)-mediated cell death. Collectively, these data establish a novel link between two highly important and rapidly growing research fields and present a new role for miR-101 as a key regulator of autophagy.

324 citations

Journal ArticleDOI
14 Feb 2013-Cell
TL;DR: TPCs make up an ion channel family that couples the cell's metabolic state to endolysosomal function and are crucial for physical endurance during food restriction and Mutant mice lacking lysoNa(ATP) have much reduced exercise endurance after fasting.

324 citations

Trending Questions (2)
How long does it take for body to enter autophagy?

Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms.

What does autophagy do Reddit?

Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway.