scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

08 Feb 2021-Autophagy (Landes Bioscience)-Vol. 17, Iss: 1, pp 1-382
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Citations
More filters
Journal ArticleDOI
University of Michigan1, Cornell University2, University of Pennsylvania3, University of Massachusetts Medical School4, University of Naples Federico II5, Baylor College of Medicine6, Spanish National Research Council7, Complutense University of Madrid8, New York University9, Boston Children's Hospital10, University of Rome Tor Vergata11, NewYork–Presbyterian Hospital12, University of Pittsburgh13, University of Paris14, French Institute of Health and Medical Research15, National University of Cuyo16, Albert Einstein College of Medicine17, University of New Mexico18, Goethe University Frankfurt19, Weizmann Institute of Science20, University of Turku21, Sapienza University of Rome22, Virginia Commonwealth University23, St. Jude Children's Research Hospital24, Discovery Institute25, University of Copenhagen26, University of Tromsø27, Eötvös Loránd University28, Merck & Co.29, University of Freiburg30, Babraham Institute31, University of South Australia32, University of Adelaide33, University of Oviedo34, University of Chicago35, University of Graz36, National Institutes of Health37, City University of New York38, Queens College39, University of Tokyo40, University of Zurich41, University of British Columbia42, Austrian Academy of Sciences43, University of California, San Francisco44, Russian Academy of Sciences45, University Medical Center Groningen46, University of Cambridge47, University of Glasgow48, Rutgers University49, University of Padua50, Kazan Federal University51, University of Bern52, University of Oxford53, Oslo University Hospital54, University of Oslo55, Foundation for Research & Technology – Hellas56, University of Crete57, Francis Crick Institute58, Osaka University59, Harvard University60, Chinese Academy of Sciences61, Icahn School of Medicine at Mount Sinai62, Shanghai Jiao Tong University63, Karolinska Institutet64
TL;DR: In this paper, preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.
Abstract: Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19. Viruses manipulate host cell pathways to support infection. Here the authors show that SARS-CoV-2 infection modulates cellular metabolism and limits autophagy, and identify druggable host pathways for virus inhibition.

140 citations

Journal ArticleDOI
TL;DR: The role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, was discussed in this article.
Abstract: Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target. The cellular consequences of dysfunctional autophagy contribute to numerous diseases. In this Review, Kitada and Koya consider the relationship between impaired autophagy and age-related metabolic derangements, including insulin resistance, type 2 diabetes mellitus and sarcopenic obesity, and discuss candidate autophagy-based therapies.

109 citations

Journal ArticleDOI
TL;DR: In this article, the authors systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing coronavirus disease 2019 pandemic. How SARS-CoV-2 regulates cellular responses to escape clearance by host cells is unknown. Autophagy is an intracellular lysosomal degradation pathway for the clearance of various cargoes, including viruses. Here, we systematically screened 28 viral proteins of SARS-CoV-2 and identified that ORF3a strongly inhibited autophagic flux by blocking the fusion of autophagosomes with lysosomes. ORF3a colocalized with lysosomes and interacted with VPS39, a component of the homotypic fusion and protein sorting (HOPS) complex. The ORF3a-VPS39 interaction prohibited the binding of HOPS with RAB7, which prevented the assembly of fusion machinery, leading to the accumulation of unfused autophagosomes. These results indicated the potential mechanism by which SARS-CoV-2 escapes degradation; that is, the virus interferes with autophagosome-lysosome fusion. Furthermore, our findings will facilitate strategies targeting autophagy for conferring potential protection against the spread of SARS-CoV-2.

106 citations

Journal ArticleDOI
TL;DR: The latest advances in the understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death are outlined, which may shed light on new targets for therapeutic interventions.
Abstract: Cell death and immune response are at the core of life. In past decades, the endoplasmic reticulum (ER) protein STING1 (also known as STING or TMEM173) was found to play a fundamental role in the production of type I interferons (IFNs) and pro-inflammatory cytokines in response to DNA derived from invading microbial pathogens or damaged hosts by activating multiple transcription factors. In addition to this well-known function in infection, inflammation, and immunity, emerging evidence suggests that the STING1-dependent signaling network is implicated in health and disease by regulating autophagic degradation or various cell death modalities (e.g., apoptosis, necroptosis, pyroptosis, ferroptosis, mitotic cell death, and immunogenic cell death [ICD]). Here, we outline the latest advances in our understanding of the regulating mechanisms and signaling pathways of STING1 in autophagy and cell death, which may shed light on new targets for therapeutic interventions.

78 citations

References
More filters
Journal ArticleDOI
TL;DR: Examination of the biosynthesis, sorting and processing of repressible alkaline phosphatase in yeast indicates that ALP will be a useful model protein for studies of membrane protein sorting in yeast.
Abstract: The Saccharomyces cerevisiae PHO8 gene product, repressible alkaline phosphatase (ALP), is a glycoprotein enzyme that is localized to the yeast vacuole (lysosome) Using antibodies raised against synthetic peptides corresponding to two distinct hydrophilic sequences in ALP, we have been able to examine the biosynthesis, sorting and processing of this protein ALP is synthesized as an inactive precursor containing a C-terminal propeptide that is cleaved from the protein in a PEP4-dependent manner The precursor and mature protein are anchored in the membrane by an N-terminal hydrophobic domain that also appears to function as an uncleaved internal signal sequence ALP has the topology of a type-II integral membrane protein containing a short basic N-terminal cytoplasmic tail that is accessible to exogenous protease when associated both with the endoplasmic reticulum and the vacuole Similar to the soluble vacuolar hydrolases carboxypeptidase Y (CPY) and proteinase A (PrA), ALP transits through the early stages of the secretory pathway prior to vacuolar delivery Two observations indicate, however, that ALP is localized to the vacuole by a mechanism which is in part different from that used by CPY and PrA: (i) maturation of proALP, which is indicative of vacuolar delivery, is less sensitive than CPY and PrA to the defects exhibited by certain of the vacuolar protein sorting (vps) mutants; and (ii) maturation of proALP proceeds normally in the presence of a potent vacuolar ATPase inhibitor, bafilomycin A1, which is known to block vacuole acidification and leads to the mis-sorting and secretion of precursor forms of CPY and PrA These results indicate that ALP will be a useful model protein for studies of membrane protein sorting in yeast

314 citations

Journal ArticleDOI
TL;DR: Evidence is presented for an unconventional protein secretion pathway that is conserved from yeast to Dictyostelium discoideum in which Acb1 may be sequestered into autophagosomal vesicles, which then fuse (either directly or indirectly) with the plasma membrane.
Abstract: In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.

312 citations

Journal ArticleDOI
TL;DR: It is shown that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium.
Abstract: In mammalian cells, amino acids affect the phosphorylation state and function of several proteins involved in mRNA translation that are regulated via the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. These include ribosomal protein S6 kinase, S6K1, and eukaryotic initiation factor 4E-binding protein, 4E-BP1. Amino acids, especially branched-chain amino acids, such as leucine, promote phosphorylation of 4E-BP1 and S6K1, and permit insulin to further increase their phosphorylation. However, it is not clear whether these effects are exerted by extracellular or intracellular amino acids. Inhibition of protein synthesis is expected to increase the intracellular level of amino acids, whereas inhibiting proteolysis has the opposite effect. We show in the present study that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium. In particular, insulin activates S6K1 and promotes initiation factor complex assembly in amino-acid-deprived cells treated with protein synthesis inhibitors, but cannot do so in the absence of these compounds. Their effects occur at concentrations commensurate with their inhibition of protein synthesis and are not due to activation of stress-activated kinase cascades. Inhibition of protein breakdown (autophagy) impairs the ability of insulin to regulate 4E-BP1 or S6K1 under such conditions. These and other data presented in the current study are consistent with the idea that it is intracellular amino acid levels that regulate mTOR signalling.

312 citations

Journal ArticleDOI
TL;DR: It is suggested that host membranes, after rupture by an invading cytoplasm-targeted bacterium, contribute to the cellular responses to infection by acting as a signaling node, with autophagy playing a central role in regulating these responses.

312 citations

Journal ArticleDOI
TL;DR: This work comprehensively characterized intrinsic disorder at proteomic and protein levels from all significant perspectives, including abundance, cellular localization, functional roles, evolution, and impact on structural coverage, and shows that intrinsic disorder is more abundant and has a unique profile in eukaryotes.
Abstract: Recent years witnessed increased interest in intrinsically disordered proteins and regions. These proteins and regions are abundant and possess unique structural features and a broad functional repertoire that complements ordered proteins. However, modern studies on the abundance and functions of intrinsically disordered proteins and regions are relatively limited in size and scope of their analysis. To fill this gap, we performed a broad and detailed computational analysis of over 6 million proteins from 59 archaea, 471 bacterial, 110 eukaryotic and 325 viral proteomes. We used arguably more accurate consensus-based disorder predictions, and for the first time comprehensively characterized intrinsic disorder at proteomic and protein levels from all significant perspectives, including abundance, cellular localization, functional roles, evolution, and impact on structural coverage. We show that intrinsic disorder is more abundant and has a unique profile in eukaryotes. We map disorder into archaea, bacterial and eukaryotic cells, and demonstrate that it is preferentially located in some cellular compartments. Functional analysis that considers over 1,200 annotations shows that certain functions are exclusively implemented by intrinsically disordered proteins and regions, and that some of them are specific to certain domains of life. We reveal that disordered regions are often targets for various post-translational modifications, but primarily in the eukaryotes and viruses. Using a phylogenetic tree for 14 eukaryotic and 112 bacterial species, we analyzed relations between disorder, sequence conservation and evolutionary speed. We provide a complete analysis that clearly shows that intrinsic disorder is exceptionally and uniquely abundant in each domain of life.

312 citations

Trending Questions (2)
How long does it take for autophagy to start Reddit?

Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms.

What does autophagy do Reddit?

Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway.