scispace - formally typeset
Journal ArticleDOI

Guiding and confining light in void nanostructure.

Reads0
Chats0
TLDR
It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.
Abstract
We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at highindex-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 mm 22 . This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides. © 2004 Optical Society of America OCIS codes: 030.4070, 130.0130, 130.2790, 230.7370, 230.7380, 230.7390, 230.7400. Recent results in integrated optics have shown the ability to guide, bend, split, and f ilter light on chips by use of optical devices based on high-index-contrast waveguides. 1–5 In all these devices the guiding mechanism is based on total internal ref lection (TIR) in a highindex material (core) surrounded by a low-indexmaterial (cladding); the TIR mechanism can strongly confine light in the high-index material. In recent years a number of structures have been proposed to guide or enhance light in low-index materials, 6–1 1 relying on external ref lections provided by interference effects. Unlike TIR, the external ref lection cannot be perfectly unity; therefore the modes in these structures are inherently leaky modes. In addition, since interference is involved, these structures are strongly wavelength dependent. Here we show that the optical field can be enhanced and conf ined in the low-index material even when light is guided by TIR. For a high-index-contrast interface, Maxwell’s equations state that, to satisfy the continuity of the normal component of electric f lux density D, the corresponding electric field (E-field) must undergo a large discontinuity with much higher amplitude in the low-index side. We show that this discontinuity can be used to strongly enhance and confine light in a nanometer-wide region of low-index material. The proposed structure presents an eigenmode, and it is compatible with highly integrated photonics technology. The principle of operation of the novel structure can be illustrated by analysis of the slab-based structure shown in Fig. 1(a), where a low-index slot is embedded between two high-index slabs (shaded regions). The novel structure is hereafter referred to as a slot waveguide. The slot waveguide eigenmode can be seen as being formed by the interaction between the fundamental eigenmodes of the individual slab waveguides. Rigorously, the analytical solution for the transverse E-field profile Ex of the fundamental TM eigenmode of the slab-based slot waveguide is

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

TL;DR: In this article, a hybrid optical waveguide is proposed to confine surface plasmon polaritons over large distances using a dielectric nanowire separated from a metal surface by a nanoscale gap.
Journal ArticleDOI

Nonlinear silicon photonics

TL;DR: In this article, a review of nonlinear effects in silicon and highlights the important applications and technological solutions in nonlinear silicon photonics is presented. But the authors do not discuss the nonlinearities in silicon.
Journal ArticleDOI

Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization

TL;DR: In this article, a numerical analysis of surface plasmon waveguides exhibiting both long-range propagation and spatial confinement of light with lateral dimensions of less than 10% of the free-space wavelength is presented.
Journal ArticleDOI

Integrated optofluidics: A new river of light

TL;DR: Some of the exciting developments so far in miniaturized optofluidic platforms bring fluid and light together and exploit their microscale interaction for a large variety of applications are overviewed.
Journal ArticleDOI

Nanoribbon waveguides for subwavelength photonics integration.

TL;DR: The properties and functions of individual crystalline oxide nanoribbons that act as subwavelength optical waveguides are described and their applicability as nanoscale photonic elements are assessed.
References
More filters
Journal ArticleDOI

Single-Mode Photonic Band Gap Guidance of Light in Air.

TL;DR: The confinement of light within a hollow core (a large air hole) in a silica-air photonic crystal fiber is demonstrated and certain wavelength bands are confined and guided down the fiber.
Journal ArticleDOI

Nanotaper for compact mode conversion.

TL;DR: It is shown that the micrometer-long silicon-on-insulator-based nanotaper coupler is able to efficiently convert both the mode field profile and the effective index, with a total length as short as 40 microm, during compact mode conversion between a fiber and a submicrometer waveguide.
Journal ArticleDOI

Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters

TL;DR: In this paper, a compact optical channel dropping filter incorporating side-coupled ring resonators as small as 3 /spl mu/m in radius is realized in silicon technology.
Journal ArticleDOI

Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures

TL;DR: In this article, a new type of optical waveguide utilizing an antiresonant reflector was described, which gave losses as low as 0.4 dB/cm for the TE mode.
Journal ArticleDOI

Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction.

TL;DR: This work demonstrates 0.8-dB/cm transmission loss for a single-mode, strip Si/SiO(2) waveguide with submicrometer cross-sectional dimensions, which is to their knowledge the smallest reported lost for a high-index-difference system such as a Si/ SiO( 2) strip waveguide.
Related Papers (5)