scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
16 Oct 2017-Physical Review Letters (American Physical Society)-Vol. 119, Iss: 16, pp 161101-161101
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a higher-order extension of the original mimetic theory, appearing in the low-energy limit of projectable Hořava-Lifshitz gravity, is considered.
Abstract: The near-simultaneous multi-messenger detection of the gravitational wave (GW) event GW170817 and its optical counterpart, the short -ray burst GRB170817A, implies that deviations of the GW speed from the speed of light are restricted to being of . In this note, we study the implications of this bound for mimetic gravity and confirm that in the original setting of the theory, GWs propagate at the speed of light, hence ensuring agreement with the recent multi-messenger detection. A higher-order extension of the original mimetic theory, appearing in the low-energy limit of projectable Hořava–Lifshitz gravity, is then considered. Performing a Bayesian statistical analysis where we compare the predictions of the higher-order mimetic model for the speed of GWs against the observational bound from GW170817/GRB170817A, we derive constraints on the three free parameters of the theory. Imposing the absence of both ghost instabilities and superluminal propagation of scalar and tensor perturbations, we find very stringent 95% confidence level upper limits of and on the coupling strengths of Lagrangian terms of the form and respectively, with the mimetic field. We discuss implications of the obtained bounds for mimetic theories. This work presents the first ever robust comparison of a mimetic theory to observational data.

73 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture.
Abstract: Recently, the optical counterpart of a gravitational wave source GW170817 has been identified in NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars. We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with reff ~ 2-3 kpc and the Sersic index of n = 3-4 for the bulge component. The spectral energy distribution from 0.15 to 24 micron indicates that this galaxy has no significant ongoing star formation, the mean stellar mass of (0.3 - 1.2) times 10^11 Msun,the mean stellar age greater than ~3 Gyr, and the metallicity of about 20% to 100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from literature, finding an angular diameter distance of 37.7 +- 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts but much different from those of long gamma-ray bursts, supporting the picture of GW170817 as a result of a merger of two NSs.

73 citations


Cites background from "GW170817: observation of gravitatio..."

  • ...Since 2015, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Advanced Virgo have succeeded in detecting a number of GW signals coming from distant black hole (BH) merger events (Abbott et al. 2016, 2017a)....

    [...]

  • ...GW170817 is a GW source whose signal was detected by the Advanced LIGO and the Advanced Virgo on 2017 August 17, 12:41:04 UT (Abbott et al. 2017b)....

    [...]

  • ...The luminosity distance of 38.4± 8.9 Mpc agrees with the distance estimate from the GW signal (40+8−14 Mpc; Abbott et al. 2017b) as well as the previous estimate to the group distance (∼ 40 Mpc; Sakai et al. 2000)....

    [...]

  • ...The GW signal showed that this could be a merger of two NSs at a distance of 40+8−14 Mpc (Abbott et al. 2017b)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the first post-Newtonian corrections to the orbital dynamics, radiated power, and gravitational waveform for binary neutron star mergers in the presence of an axion were calculated using an effective field theory approach.
Abstract: The observation of gravitational waves from a binary neutron star merger by LIGO/VIRGO and the associated electromagnetic counterpart provides a high precision test of orbital dynamics, and therefore a new and sensitive probe of extra forces and new radiative degrees of freedom (d.o.f.). Axions are one particularly well-motivated class of extensions to the Standard Model leading to new forces and sources of radiation, which we focus on in this paper. Using an effective field theory (EFT) approach, we calculate the first post-Newtonian corrections to the orbital dynamics, radiated power, and gravitational waveform for binary neutron star mergers in the presence of an axion. This result is applicable to many theories which add an extra massive scalar d.o.f. to general relativity. We then perform a detailed forecast of the potential for Advanced LIGO to constrain the free parameters of the EFT, and map these to the mass ${m}_{a}$ and decay constant ${f}_{a}$ of the axion. At design sensitivity, we find that Advanced LIGO can potentially exclude axions with ${m}_{a}\ensuremath{\lesssim}{10}^{\ensuremath{-}11}\text{ }\text{ }\mathrm{eV}$ and ${f}_{a}\ensuremath{\sim}({10}^{14}\ensuremath{-}{10}^{17})\text{ }\text{ }\mathrm{GeV}$. There are a variety of complementary observational probes over this region of parameter space, including the orbital decay of binary pulsars, black hole superradiance, and laboratory searches. We comment on the synergies between these various observables.

73 citations

Journal Article
TL;DR: In this paper, a Bayesian method for quantitatively estimating properties of the quark-gluon plasma (QGP), an extremely hot and dense state of fluid-like matter created in relativistic heavy-ion collisions, is presented.
Abstract: I develop and apply a Bayesian method for quantitatively estimating properties of the quark-gluon plasma (QGP), an extremely hot and dense state of fluid-like matter created in relativistic heavy-ion collisions. The QGP cannot be directly observed -- it is extraordinarily tiny and ephemeral, about $10^{-14}$ meters in size and living $10^{-23}$ seconds before freezing into discrete particles -- but it can be indirectly characterized by matching the output of a computational collision model to experimental observations. The model, which takes the QGP properties of interest as input parameters, is calibrated to fit the experimental data, thereby extracting a posterior probability distribution for the parameters. In this dissertation, I construct a specific computational model of heavy-ion collisions and formulate the Bayesian parameter estimation method, which is based on general statistical techniques. I then apply these tools to estimate fundamental QGP properties, including its key transport coefficients and characteristics of the initial state of heavy-ion collisions. Perhaps most notably, I report the most precise estimate to date of the temperature-dependent specific shear viscosity $\eta/s$, the measurement of which is a primary goal of heavy-ion physics. The estimated minimum value is $\eta/s = 0.085_{-0.025}^{+0.026}$ (posterior median and 90% uncertainty), remarkably close to the conjectured lower bound of $1/4\pi \simeq 0.08$. The analysis also shows that $\eta/s$ likely increases slowly as a function of temperature. Other estimated quantities include the temperature-dependent bulk viscosity $\zeta/s$, the scaling of initial state entropy deposition, and the duration of the pre-equilibrium stage that precedes QGP formation.

73 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the GW150914 event, detected by the LIGO/Virgo Collaboration, and study the model dependence of its echo properties, finding that echoes are reasonably approximated by complex Gaussians, with amplitudes that decay as a power law in time.
Abstract: While recent detections of gravitational waves from the mergers of binary black holes match well with the predictions of General Relativity, they cannot directly confirm the existence of event horizons. Exotic compact objects are motivated by quantum models of black holes and can have exotic structure (or a ``wall'') just outside the (would-be) horizon. Exotic compact objects produce ringdown waveforms similar to the General Relativistic black holes, but they are followed by delayed ``echoes.'' By solving linearized Einstein equations, we can model these echoes and provide analytic templates that can be used to compare to observations. For concreteness, we consider the GW150914 event, detected by the LIGO/Virgo Collaboration, and study the model dependence of its echo properties. We find that echoes are reasonably approximated by complex Gaussians, with amplitudes that decay as a power law in time, while their width in time (frequency) grows (shrinks) over subsequent echoes. We also show that trapped modes between a perfectly reflecting wall and angular momentum barrier in the Kerr metric can exhibit superradiant instability over long times, as expected.

73 citations

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations