scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
16 Oct 2017-Physical Review Letters (American Physical Society)-Vol. 119, Iss: 16, pp 161101-161101
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a detector design that reduces the high-frequency quantum noise with an active optomechanical filter, frequency-dependent squeezing, and high optical power.
Abstract: The gravitational waveform of merging binary neutron stars encodes information about extreme states of matter. Probing these gravitational emissions requires the gravitational-wave detectors to have high sensitivity above 1 kHz. Fortunately for current advanced detectors, there is a sizeable gap between the quantum-limited sensitivity and the classical noise at high frequencies. Here we propose a detector design that closes such a gap by reducing the high-frequency quantum noise with an active optomechanical filter, frequency-dependent squeezing, and high optical power. The resulting noise level from 1 to 4 kHz approaches the current facility limit and is a factor of 20 to 30 below the design of existing advanced detectors. This will allow for precision measurements of (i) the postmerger signal of the binary neutron star, (ii) late-time inspiral, merger, and ringdown of low-mass black hole--neutron star systems, and possible detection of (iii) high-frequency modes during supernovae explosions. This design tries to maximize the science return of current facilities by achieving a sensitive frequency band that is complementary to the longer-baseline third-generation detectors: the 10 km Einstein Telescope and 40 km Cosmic Explorer. We have highlighted the main technical challenges towards realizing the design, which requires dedicated research programs. If demonstrated in current facilities, the techniques can be transferred to new facilities with longer baselines.

65 citations

Journal ArticleDOI
TL;DR: In this paper, the spectrum of primordial gravitational waves induced in the postinflationary universe was analyzed and it was shown that if the energy density of the universe is dominated by a component before big bang nucleosynthesis, its equation of state could be constrained by gravitational wave experiments depending on the ratio of energy densities of ε and radiation and also the temperature at the end of the ε-dominated era.
Abstract: Assuming that inflation is followed by a phase where the energy density of the Universe is dominated by a component with a general equation of state, we evaluate the spectrum of primordial gravitational waves induced in the postinflationary Universe. We show that if the energy density of the Universe is dominated by a component $\ensuremath{\phi}$ before big bang nucleosynthesis, its equation of state could be constrained by gravitational wave experiments depending on the ratio of energy densities of $\ensuremath{\phi}$ and radiation and also the temperature at the end of the $\ensuremath{\phi}$-dominated era. Also, we discuss the impact of scale dependence of tensor modes on the primordial gravitational wave spectrum during the $\ensuremath{\phi}$ domination. These models are motivated by beyond Standard Model physics and scenarios for nonthermal production of dark matter in the early Universe. We also constrain the parameter space of the tensor spectral index and the tensor-to-scalar ratio, using the experimental limits from gravitational wave experiments.

64 citations

Journal ArticleDOI
TL;DR: In this paper, an analytic model of the gamma-ray burst (GRB) afterglows observed off-axis was provided, showing that there is a strong correlation between the allowed values of Γ/(c, 0) and b, leading to a narrow strip of allowed solutions in the Γ_(c,0) −b plane above some minimal values.
Abstract: GRB 170817A/GW 170817 is the first gamma-ray burst (GRB) clearly viewed far from the GRB jet’s symmetry axis. Its afterglow was densely monitored over a wide range of frequencies and times. It has been modelled extensively, primarily numerically, and although this endeavour was very fruitful, many of the underlying model parameters remain undetermined. We provide analytic modelling of GRB afterglows observed off-axis, considering jets with a narrow core (of half-opening angle θ_c) and power-law wings in energy per unit solid angle (ϵ = ϵ_cΘ^(−a)) where Θ = [1 + (θ/θ_c)²]^(1/2)) and initial specific kinetic energy (Γ₀ − 1 = [Γ_(c, 0) − 1]Θ^(−b)), as well as briefly discuss Gaussian jets. Our study reveals qualitatively different types of light curves that can be viewed in future off-axis GRBs, with either single or double peaks, depending on the jet structure and the viewing angle. Considering the light-curve shape rather than the absolute normalizations of times and/or fluxes, removes the dependence of the light curve on many of the highly degenerate burst parameters. This study can be easily used to determine the underlying jet structure, significantly reduce the effective parameter space for numerical fitting attempts and provide physical insights. As an illustration, we show that for GRB 170817A, there is a strong correlation between the allowed values of Γ_(c, 0) and b, leading to a narrow strip of allowed solutions in the Γ_(c, 0)–b plane above some minimal values Γ_(c, 0) ≳ 40, b ≳ 1.2. Furthermore, the Lorentz factor of the material dominating the early light curve can be constrained by three independent techniques to be Γ₀ (θ_(min, 0)) ≈ 5–7.

64 citations


Cites background from "GW170817: observation of gravitatio..."

  • ...1 IN T RO D U C T I O N The detection of a binary neutron star merger with laser interferometer gravitational-wave observatory (LIGO), GW170817 (Abbott et al. 2017a), accompanied by a long-lived gamma-ray burst (GRB) afterglow (e.g. Abbott et al. 2017b) has enabled us for the first time to unambiguously observe the afterglow of a GRB seen from latitudes much greater than the jet’s core....

    [...]

  • ...…gravitational-wave observatory (LIGO), GW170817 (Abbott et al. 2017a), accompanied by a long-lived gamma-ray burst (GRB) afterglow (e.g. Abbott et al. 2017b) has enabled us for the first time to unambiguously observe the afterglow of a GRB seen from latitudes much greater than the…...

    [...]

  • ...1 IN T RO D U C T I O N The detection of a binary neutron star merger with laser interferometer gravitational-wave observatory (LIGO), GW170817 (Abbott et al. 2017a), accompanied by a long-lived gamma-ray burst (GRB) afterglow (e.g. Abbott et al. 2017b) has enabled us for the first time to…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors examined the possibility that the light companion in the highly asymmetric binary compact object coalescence event GW190814 is a hypernuclear star and found that the maximal masses of hypernuclear stars, even for maximal rapidly rotating configurations, are inconsistent with a stellar nature interpretation of the light companions in GW 190814, implying that this event involved two black holes rather than a neutron star and a black hole.
Abstract: We examine the possibility that the light companion in the highly asymmetric binary compact object coalescence event GW190814 is a hypernuclear star. We use density functional theory with functionals that have been tuned to the properties of $\mathrm{\ensuremath{\Lambda}}$ hypernuclei as well as astrophysical constraints placed by the masses of the most massive millisecond pulsars, the mass-radius range inferred from the NICER experiment, and the binary neutron star merger event GW170817. We compute general-relativistic static and maximally rotating Keplerian configurations of purely nucleonic and hypernuclear stars. We find that while nucleonic stars are broadly consistent with a neutron star being involved in GW190814, this would imply no new degrees of freedom in the dense matter up to 6.5 times the nuclear saturation density. Allowing for hyperonization of dense matter, we find that the maximal masses of hypernuclear stars, even for maximal rapidly rotating configurations, are inconsistent with a stellar nature interpretation of the light companion in GW190814, implying that this event involved two black holes rather than a neutron star and a black hole.

64 citations

Journal ArticleDOI
TL;DR: In this article, the general conditions for a large family of shift symmetry breaking degenerate higher order scalar-tensor (DHOST) theories to admit stealth black hole solutions were derived.
Abstract: We derive the general conditions for a large family of shift symmetry breaking degenerate higher order scalar-tensor (DHOST) theories to admit stealth black hole solutions. Such black hole configurations correspond to vacuum solutions of general relativity and admit a scalar hair which does not gravitate, revealing itself only at the perturbative level. We focus our investigation on hairy Schwarzschild-(A)dS or pure Schwarzschild solutions, dressed with a linear time-dependent scalar hair, and assuming a constant kinetic term. We also discuss subclasses of this family which satisfy the observational constraint ${c}_{\mathrm{grav}}={c}_{\text{light}}$, as well as the recent constraint ensuring the absence of graviton decay. We provide at the end concrete examples of DHOST Lagrangians satisfying our conditions. This work provides a first analysis of exact black hole solutions in shift symmetry breaking DHOST theories beyond Horndeski.

64 citations

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations