scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
16 Oct 2017-Physical Review Letters (American Physical Society)-Vol. 119, Iss: 16, pp 161101-161101
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS).
Abstract: The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle waveform is a sensitive probe of the EOS controlling the merging neutron stars’ structure. In this topical review, I discuss the various constraints that have been made on the EOS in the year following the discovery of GW170817. In particular, I review the surprising relationship that has emerged between the effective tidal deformability of the binary system and the neutron star radius. I also report new results that make use of this relationship, finding that the radius inferred from GW170817 lies between 9.8 and 13.2km at 90% confidence, with distinct likelihood peaks at 10.8 and 12.3km. I compare these radii, as well as those inferred in the literature, to X-ray measurements of the neutron star radius. I also summarize the various maximum mass constraints, which point towards a maximum mass $ \lesssim 2.3 M_{\odot}$, depending on the fate of the remnant, and which can be used to additionally constrain the high-density EOS. I review the constraints on the EOS that have been performed directly, through Bayesian inference schemes. Finally, I comment on the importance of disentangling thermal effects in future EOS constraints from neutron star mergers.

63 citations

Journal ArticleDOI
TL;DR: In this article, a supermassive black hole in the Galactic Center was used as the lens, and the strong and weak deflection lensing observables were obtained, including the apparent radius of the photon sphere as well as angular separation, brightness difference and differential time delay between the relativistic images.
Abstract: A charged black hole was predicted by the Einstein--Horndeski--Maxwell theory. In order to provide its observational signatures, we investigate its weak and strong deflection gravitational lensings. We find its weak deflection lensing observables, including the positions, magnifications and differential time delay of the lensed images. We also obtain its strong deflection lensing observables, including the apparent radius of the photon sphere as well as the angular separation, brightness difference and differential time delay between the relativistic images. Taking the supermassive black hole in the Galactic Center as the lens, we evaluate these observables and compare these signatures with those of the Schwarzschild, Reissner-Nordstr\"{o}m, tidal Reissner-Nordstr\"{o}m and charged Galileon black holes. After a detailed analysis of the feasibility of measuring these lensing observables, we conclude that although it is possible to detect some leading effects of the weak and strong deflection lensings by the charged Horndeski and other black holes with current technology, it would be unlikely to distinguish one kind of these black holes from the others based on these detections in the near future due to lack of enough highly angular resolution in astronomical observations to tell their differences.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the viewing angle of GW170817, the angle between the binary's angular momentum and the line of sight, and provided the first posterior samples from Bayesian parameter estimation of LIGO/Virgo data.
Abstract: The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW-EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW-EM observations to measure the viewing angle of GW170817, the angle between the binary's angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of $40.7\pm 2.36$ Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is $32^{+10}_{-13}\,\pm 1.7$ degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of $\ge 13^\circ$, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt $\gamma$-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

63 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the EHT image of shadow attributed to the M87* supermassive black hole (SMBH) to assess the validity of fundamental physics in the strong-field regime.
Abstract: Thanks to the release of the extraordinary EHT image of shadow attributed to the M87* supermassive black hole (SMBH), we have a novel window to assess the validity of fundamental physics in the strong-field regime. Motivated by this, we consider Johannsen \& Psaltis metric parameterized by mass, spin, and an additional dimensionless hair parameter $\epsilon$ which in the high rotation regimes is able to provide a suitable framework for the test of the no-hair theorem (NHT) using the EHT data. Incorporating the $\epsilon$ into the standard Kerr spacetime enrich it in the sense that, depending on setting the positive and negative values for that, we deal with alternative compact objects: deformed Kerr naked singularity and Kerr BH solutions, respectively. Shadows associated with these two possible solutions indicate that the deformation parameter $\epsilon$ affects the geometry shape of standard shadow such that it become more oblate and prolate with $\epsilon 0$, respectively. By scanning the window associated with three shadow observables: oblateness, deviation from circularity, and shadow diameter, we perform a numerical analysis within the range $a_*=0.9\mp0.1$ of the dimensionless rotation parameter, to find the constraints on the hair parameter $\epsilon$ in both possible solutions. For both possible signs of $\epsilon$, we extract a variety of upper bounds that are in interplay with $a_*$. Our analysis suggests that as the rotation parameter approaches the extreme limit, although the allowable range of both hair parameters becomes narrower, the hairy Kerr BH solution is a more promising candidate to play a role of the alternative compact object instead of standard Kerr BH. The lack of tension between hairy Kerr BH with the current observation of the EHT shadow of the M87* SMBH carries this message that the possibility of NHT violation is not excluded.

63 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the thermodynamic conditions of matter and radiation along the merger dynamics and study the impact of trapped neutrinos on the remnant matter's pressure, electron fraction and temperature.
Abstract: Matter in neutron star collisions can reach densities up to few times the nuclear saturation threshold and temperatures up to one hundred MeV. Understanding the structure and composition of such matter requires many-body nonperturbative calculations that are currently highly uncertain.Unique constraints on the neutron star matter are provided by gravitational-wave observations aided by numerical relativity simulations. In this work, we explore the thermodynamical conditions of matter and radiation along the merger dynamics. We consider 3 microphysical equation of state models and numerical relativity simulations including an approximate neutrino transport scheme. The neutron star cores collision and their multiple centrifugal bounces heat the initially cold matter to several tens of MeV. Streams of hot matter with initial densities $\sim1-2\rho_0$ move outwards and cool due to decompression and neutrino emission. The merger can result in a neutron star remnant with densities up to $3-5\rho_0$ and temperatures $\sim 50$~MeV. The highest temperatures are confined in an approximately spherical annulus at densities $\sim\rho_0$. Such temperatures favour positron-neutron capture at densities $\sim\rho_0$, thus leading to a neutrino emission dominated by electron antineutrinos. We study the impact of trapped neutrinos on the remnant matter's pressure, electron fraction and temperature and find that it has a negligible effect. Disks around neutron star or black hole remnant are neutron rich and not isentropic, but they differ in size, entropy and lepton fraction depending on the nature of the central object. In presence of a black hole, disks are smaller and mostly transparent to neutrinos; in presence of a massive neutron star, they are more massive, geometrically and optically thick.

63 citations

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations