scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
16 Oct 2017-Physical Review Letters (American Physical Society)-Vol. 119, Iss: 16, pp 161101-161101
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors study static spherically symmetric black hole solutions with a linearly time-dependent scalar field and discuss their linear stability in the shift-and reflection-symmetric subclass of quadratic degenerate higher-order scalar-tensor (DHOST) theories.
Abstract: We study static spherically symmetric black hole solutions with a linearly time-dependent scalar field and discuss their linear stability in the shift- and reflection-symmetric subclass of quadratic degenerate higher-order scalar-tensor (DHOST) theories. We present the explicit forms of the reduced system of background field equations for a generic theory within this subclass. Using the reduced equations of motion, we show that in several cases the solution is forced to be of the Schwarzschild or Schwarzschild-(anti-)de Sitter form. We consider odd-parity perturbations around general static spherically symmetric black hole solutions, and derive the concise criteria for the black holes to be stable. Our analysis also covers the case with a static or constant profile of the scalar field.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study potential systematic biases during the extraction of parameters from non-spinning sources using different descriptions for both, the point-particle dynamics and tidal effects, and find that for the considered cases the mass and spin recovery show almost no systematic bias with respect to the chosen waveform model.
Abstract: Gravitational wave (GW) astronomy has consolidated its role as a new observational window to reveal the properties of compact binaries in the Universe. In particular, the discovery of the first binary neutron star coalescence, GW170817, led to a number of scientific breakthroughs as the possibility to place constraints on the equation of state of cold matter at supranuclear densities. These constraints and all scientific results based on them require accurate models describing the GW signal to extract the source properties from the measured signal. In this article, we study potential systematic biases during the extraction of parameters from non-spinning sources using different descriptions for both, the point-particle dynamics and tidal effects. We find that for the considered cases the mass and spin recovery show almost no systematic bias with respect to the chosen waveform model. However, the extracted tidal effects can be strongly biased, where we find generally that Post-Newtonian approximants predict neutron stars with larger deformability and radii than numerical relativity tuned models. Noteworthy, an increase in the post-Newtonian order in the tidal phasing does not lead to a monotonic change in the estimated properties. We find that for a signal with strength similar to GW170817, but observed with design sensitivity with the network of the two LIGO detectors and the Virgo detector, the estimated tidal parameters can differ by more than a factor of two depending on the employed tidal description of the waveform approximant. This shows the current need for the development of better waveform models to extract reliably the source properties from upcoming GW detections.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the equations of motion of nonspinning compact binary systems at the third post-Newtonian (PN) order in massless scalar-tensor theories are presented.
Abstract: Scalar-tensor theories are one of the most natural and well-constrained alternative theories of gravity, while still allowing for significant deviations from general relativity. We present the equations of motion of nonspinning compact binary systems at the third post-Newtonian (PN) order in massless scalar-tensor theories. We adapt the Fokker action of point particles in harmonic coordinates in general relativity to the specificities of scalar-tensor theories. We use dimensional regularization to treat both the infrared and ultraviolet divergences, and we consistently include the tail effects that contribute by a nonlocal term to the dynamics. This work is crucial in order to later compute the scalar gravitational waveform and the energy flux at 2PN order.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first tentative detection of post-merger gravitational wave echoes from a highly spinning "black hole" remnant, consistent with a 2.6-2.6× 10−5 probability.
Abstract: The first direct observation of a binary neutron star (BNS) merger was a watershed moment in multi-messenger astronomy. However, gravitational waves from GW170817 have only been observed prior to the BNS merger, but electromagnetic observations all follow the merger event. While post-merger gravitational wave signal in general relativity is too faint (given current detector sensitivities), here we present the first tentative detection of post-merger gravitational wave "echoes" from a highly spinning "black hole" remnant. The echoes may be expected in different models of quantum black holes that replace event horizons by exotic Planck-scale structure and tentative evidence for them has been found in binary black hole merger events. The fact that the echo frequency is suppressed by log M (in Planck units) puts it squarely in the LIGO sensitivity window, allowing us to build an optimal model-agnostic search strategy via cross-correlating the two detectors in frequency/time. We find a tentative detection of echoes at fecho 72 Hz, around 1.0 sec after the BNS merger, consistent with a 2.6–2.7 M⊙ "black hole" remnant with dimensionless spin 0.84–0.87. Accounting for all the "look-elsewhere" effects, we find a significance of 4.2 σ, or a false alarm probability of 1.6× 10−5, i.e. a similar cross-correlation within the expected frequency/time window after the merger cannot be found more than 4 times in 3 days. If confirmed, this finding will have significant consequences for both physics of quantum black holes and astrophysics of binary neutron star mergers.

54 citations

Posted Content
TL;DR: The Computational Relativity CoRe database as mentioned in this paper contains 367 waveforms from numerical simulations that are consistent with general relativity and that employ constraint satisfying initial data in hydrodynamical equilibrium.
Abstract: We present the Computational Relativity CoRe collaboration's public database of gravitational waveforms from binary neutron star mergers. The database currently contains 367 waveforms from numerical simulations that are consistent with general relativity and that employ constraint satisfying initial data in hydrodynamical equilibrium. It spans 164 physically distinct configuration with different binary parameters (total binary mass, mass-ratio, initial separation, eccentricity, and stars' spins) and simulated physics. Waveforms computed at multiple grid resolutions and extraction radii are provided for controlling numerical uncertainties. We also release an exemplary set of 18 hybrid waveforms constructed with a state-of-art effective-one-body model spanning the frequency band of advanced gravitational-wave detectors. We outline present and future applications of the database to gravitational-wave astronomy.

53 citations

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations