scispace - formally typeset
Search or ask a question
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
16 Oct 2017-Physical Review Letters (American Physical Society)-Vol. 119, Iss: 16, pp 161101-161101
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors revisited the constraint on the maximum mass of cold spherical neutron stars coming from the observational results of GW170817 and developed a new framework for the analysis by employing both energy and angular momentum conservation laws.
Abstract: We revisit the constraint on the maximum mass of cold spherical neutron stars coming from the observational results of GW170817. We develop a new framework for the analysis by employing both energy and angular momentum conservation laws as well as solid results of latest numerical-relativity simulations and of neutron stars in equilibrium. The new analysis shows that the maximum mass of cold spherical neutron stars can be only weakly constrained as ${M}_{\mathrm{max}}\ensuremath{\lesssim}2.3\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$. Our present result illustrates that the merger remnant neutron star at the onset of collapse to a black hole is not necessarily rapidly rotating and shows that we have to take into account the angular momentum conservation law to impose the constraint on the maximum mass of neutron stars.

248 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present late-time optical detections and deep near-infrared limits on the emission from GW170817 at 110 days post-merger.
Abstract: The binary neutron star merger GW170817 was the first multi-messenger event observed in both gravitational and electromagnetic waves1,2. The electromagnetic signal began approximately two seconds post-merger with a weak, short burst of gamma rays3, which was followed over the next hours and days by the ultraviolet, optical and near-infrared emission from a radioactively powered kilonova4,5,6,7,8,9,10,11. Later, non-thermal rising X-ray and radio emission was observed12,13. The low luminosity of the gamma rays and the rising non-thermal flux from the source at late times could indicate that we are outside the opening angle of the beamed relativistic jet. Alternatively, the emission could be arising from a cocoon of material formed from the interaction between a jet and the merger ejecta13,14,15. Here we present late-time optical detections and deep near-infrared limits on the emission from GW170817 at 110 days post-merger. Our new observations are at odds with expectations of late-time emission from kilonova models, being too bright and blue16,17. Instead, the emission arises from the interaction between the relativistic ejecta of GW170817 and the interstellar medium. We show that this emission matches the expectations of a Gaussian-structured relativistic jet, which would have launched a high-luminosity, short gamma-ray burst to an aligned observer. However, other jet structure or cocoon models can also match current data—the future evolution of the afterglow will directly distinguish the origin of the emission.

246 citations

Journal ArticleDOI
TL;DR: In this article, a three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulation of a disk formed in neutron star mergers is presented.
Abstract: We investigate the long-term evolution of black hole accretion disks formed in neutron star mergers. These disks expel matter that contributes to an $r$-process kilonova, and can produce relativistic jets powering short gamma-ray bursts. Here we report the results of a three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulation of such a disk which is evolved for long enough ($\sim 9$s, or $\sim 6\times 10^5 r_{\rm g}/c$) to achieve completion of mass ejection far from the disk. Our model starts with a poloidal field, and fully resolves the most unstable mode of the magnetorotational instability. We parameterize the dominant microphysics and neutrino cooling effects, and compare with axisymmetric hydrodynamic models with shear viscosity. The GRMHD model ejects mass in two ways: a prompt MHD-mediated outflow and a late-time, thermally-driven wind once the disk becomes advective. The total amount of unbound mass ejected ($0.013M_\odot$, or $\simeq 40\%$ of the initial torus mass) is twice as much as in hydrodynamic models, with higher average velocity ($0.1c$) and a broad electron fraction distribution with a lower average value ($0.16$). Scaling the ejected fractions to a disk mass of $\sim 0.1M_\odot$ can account for the red kilonova from GW170817 but underpredicts the blue component. About $\sim 10^{-3}M_\odot$ of material should undergo neutron freezout and could produce a bright kilonova precursor in the first few hours after the merger. With our idealized initial magnetic field configuration, we obtain a robust jet and sufficient ejecta with Lorentz factor $\sim 1-10$ to (over)produce the non-thermal emission from GW1708107.

246 citations


Cites background from "GW170817: observation of gravitatio..."

  • ...The recent detection of the neutron star (NS) merger GW1708171 in gravitational- and electromagnetic waves (Abbott et al. 2017c,d, and references therein) has advanced several outstanding issues in astrophysics....

    [...]

  • ...…production (e.g., Kasen et al. 2017; Côté et al. 2018; Hotokezaka et al. 2018), provided unambiguous association between a neutron star merger and a short gamma-ray burst (Abbott et al. 2017b), and set constraints on the dense-matter equation of state (e.g., Bauswein et al. 2017; Margalit ?...

    [...]

  • ...For the particular case of GW710817, the amount of dynamical ejecta expected is smaller than the total r-process mass inferred from the kilonova (e.g., Abbott et al. 2017a; Shibata et al. 2017; however see Kawaguchi et al. 2018 for a different kilonova mass estimate)....

    [...]

Journal ArticleDOI
TL;DR: The Event Horizon Telescope has recently provided the first image of the dark shadow around the supermassive black hole M87* as discussed by the authors, which provides strong limits on the amount of light that can be seen from the Event Horizon observations.
Abstract: The Event Horizon Telescope has recently provided the first image of the dark shadow around the supermassive black hole M87*. The observation of a highly circular shadow provides strong limits on d ...

244 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1137 moreInstitutions (125)
TL;DR: In this paper, the authors presented a search for GWs from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo.
Abstract: The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is ${h}_{\mathrm{rss}}^{50 \% }=2.1\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is ${h}_{\mathrm{rss}}^{50 \% }=8.4\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a millisecond magnetar model, and ${h}_{\mathrm{rss}}^{50 \% }=5.9\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

242 citations


Cites background or methods or result from "GW170817: observation of gravitatio..."

  • ...Taking the posterior distribution for the progenitor masses of GW170817 (Abbott et al. 2017a), one can calculate a probability distribution for the gravitational mass of the postmerger remnant assuming conservation of baryonic mass (and neglecting mass loss to the ejecta)....

    [...]

  • ...A hypermassive NS remnant may also partially explain the delay between the coalescence time of GW170817 and the trigger time of the short γ-ray burst (GRB) 170817A, detected 1.7 s later by the Fermi Gamma-ray Burst Monitor (Abbott et al. 2017c; Goldstein et al. 2017)....

    [...]

  • ...The simulated sources are placed at the known sky location of the optical counterpart of GW170817 and with orbital inclination consistent with the pre-merger analysis (Abbott et al. 2017a)....

    [...]

  • ...GRB 170817A was sub-energetic compared to the population of cosmological short GRBs (Berger 2014; Abbott et al. 2017b; Goldstein et al. 2017), had an atypical X-ray afterglow (Evans et al. 2017; Troja et al. 2017), and had no observations hinting at a central engine remaining active following the…...

    [...]

  • ...…12:41:04.4 UTC, the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) and the Advanced Virgo detector observed GW170817, the gravitational-wave (GW) signal from the coalescence of two compact objects, almost certainly neutron stars (NSs; Abbott et al. 2017a)....

    [...]

References
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +970 moreInstitutions (114)
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Abstract: We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4+0.7−0.9×10−22. The inferred source-frame initial black hole masses are 14.2+8.3−3.7M⊙ and 7.5+2.3−2.3M⊙ and the final black hole mass is 20.8+6.1−1.7M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440+180−190 Mpc corresponding to a redshift 0.09+0.03−0.04. All uncertainties define a 90 % credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

3,448 citations