scispace - formally typeset
Open AccessJournal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
- 16 Oct 2017 - 
- Vol. 119, Iss: 16, pp 161101-161101
Reads0
Chats0
TLDR
The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Strangeness in Nuclei and Neutron Stars

TL;DR: In this article, the present status of the experimental and theoretical developments in the field of strangeness in nuclei and neutron stars is reviewed, and the theoretical and experimental analysis of the properties of kaons and antikaons in dense nuclear matter are discussed.
Journal ArticleDOI

LIGO Detector Characterization in the Second and Third Observing Runs

D. Davis, +303 more
TL;DR: The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational wave events as discussed by the authors.
Journal ArticleDOI

Cosmic archaeology with gravitational waves from cosmic strings

TL;DR: In this article, it was shown that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested.
Journal ArticleDOI

A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341

TL;DR: In this paper, it was shown that GRB150101B is an analogue of GRB170817A located at a cosmological distance, and that the optical light is produced by a luminous kilonova, while the observed X-rays trace the GRB afterglow viewed at an angle of 13°.
Journal ArticleDOI

Universal infrared scaling of gravitational wave background spectra

TL;DR: In this paper, the authors studied the general infrared behavior of the power spectrum of a stochastic gravitational wave background produced by stress tensor in the form bilinear in certain dynamical degrees of freedom.
References
More filters
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Journal ArticleDOI

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Related Papers (5)

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott, +1198 more

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more