scispace - formally typeset
Search or ask a question
Posted Content

Hacking Quantum Networks: Extraction and Installation of Quantum Data

TL;DR: In this article, the problem of quantum information extraction from and installation on a quantum network given only partial access is studied, and the authors show that a properly prepared partially entangled probe state can generally outperform a maximally entangled one in quantum hacking.
Abstract: We study the problem of quantum hacking, which is the procedure of quantum-information extraction from and installation on a quantum network given only partial access. This problem generalizes a central topic in contemporary physics -- information recovery from systems undergoing scrambling dynamics, such as the Hayden--Preskill protocol in black-hole studies. We show that a properly prepared partially entangled probe state can generally outperform a maximally entangled one in quantum hacking. Moreover, we prove that finding an optimal decoder for this stronger task is equivalent to that for Hayden--Preskill-type protocols, and supply analytical formulas for the optimal hacking fidelity of large networks. In the two-user scenario where Bob attempts to hack Alice's data, we find that the optimal fidelity increases with Bob's hacking space relative to Alice's user space. However, if a third neutral party, Charlie, is accessing the computer concurrently, the optimal hacking fidelity against Alice drops with Charlie's user-space dimension, rendering targeted quantum hacking futile in high-dimensional multi-user scenarios without classical attacks. When applied to the black-hole information problem, the limited hacking fidelity implies a reflectivity decay of a black hole as an information mirror.
References
More filters
Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations

Journal ArticleDOI
28 Oct 1982-Nature
TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Abstract: If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon is guaranteed to have the same polarization as the original photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: in the case of a photon, one could determine its polarization by first producing a beam of identically polarized copies and then measuring the Stokes parameters1. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems.

4,544 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived properties of this straightforward generalization of the quantum mechanical transition probability and gave, in some important cases, an explicit expression for the transition probability P(ω,ϱ) in terms of the spectrum of all the numbers |(x,y)|2 taken over all such realizations.

1,555 citations

Journal ArticleDOI
19 Oct 2018-Science
TL;DR: What it will take to achieve this so-called quantum internet is reviewed and different stages of development that each correspond to increasingly powerful applications are defined, including a full-blown quantum internet with functional quantum computers as nodes connected through quantum communication channels.
Abstract: The internet-a vast network that enables simultaneous long-range classical communication-has had a revolutionary impact on our world. The vision of a quantum internet is to fundamentally enhance internet technology by enabling quantum communication between any two points on Earth. Such a quantum internet may operate in parallel to the internet that we have today and connect quantum processors in order to achieve capabilities that are provably impossible by using only classical means. Here, we propose stages of development toward a full-blown quantum internet and highlight experimental and theoretical progress needed to attain them.

1,397 citations

Journal ArticleDOI
TL;DR: There is less than one-half unit of information, on average, in the smaller subsystem of a total system in a random pure state.
Abstract: If a quantum system of Hilbert space dimension mn is in a random pure state, the average entropy of a subsystem of dimension m\ensuremath{\le}n is conjectured to be ${\mathit{S}}_{\mathit{m},\mathit{n}}$= ${\mathit{S}}_{\mathit{k}=\mathit{n}+1}^{\mathit{mn}}$ 1/k-m-1/2n and is shown to be \ensuremath{\simeq}lnm-m/2n for 1\ensuremath{\ll}m\ensuremath{\le}n. Thus there is less than one-half unit of information, on average, in the smaller subsystem of a total system in a random pure state.

1,313 citations