scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hadronic molecules

TL;DR: In this article, the authors review experimental evidences of various candidates of hadronic molecules, and methods of identifying such structures Nonrelativistic effective field theories are the suitable framework for studying hadronic molecule, and are discussed in both the continuum and finite volumes.
Abstract: A large number of experimental discoveries especially in the heavy quarkonium sector that did not at all fit to the expectations of the until then very successful quark model led to a renaissance of hadron spectroscopy Among various explanations of the internal structure of these excitations, hadronic molecules, being analogues of light nuclei, play a unique role since for those predictions can be made with controlled uncertainty We review experimental evidences of various candidates of hadronic molecules, and methods of identifying such structures Nonrelativistic effective field theories are the suitable framework for studying hadronic molecules, and are discussed in both the continuum and finite volumes Also pertinent lattice QCD results are presented Further, we discuss the production mechanisms and decays of hadronic molecules, and comment on the reliability of certain assertions often made in the literature
Citations
More filters
Journal ArticleDOI
TL;DR: Recently, a variety of QCD inspired phenomenological models have been proposed, such as meson-gluon hybrids and pentaquark baryons that contain heavy (charm or bottom) quarks as mentioned in this paper.
Abstract: Quantum chromodynamics (QCD), the generally accepted theory for strong interactions, describes the interactions between quarks and gluons. The strongly interacting particles that are seen in nature are hadrons, which are composites of quarks and gluons. Since QCD is a strongly coupled theory at distance scales that are characteristic of observable hadrons, there are no rigorous, first-principle methods to derive the spectrum and properties of the hadrons from the QCD Lagrangian, except for lattice QCD simulations that are not yet able to cope with all aspects of complex and short-lived states. Instead, a variety of “QCD inspired” phenomenological models have been proposed. Common features of these models are predictions for the existence of hadrons with substructures that are more complex than the standard quark-antiquark mesons and the three-quark baryons of the original quark model that provides a concise description of most of the low-mass hadrons. Recently, an assortment of candidates for nonstandard multiquark mesons, meson-gluon hybrids, and pentaquark baryons that contain heavy (charm or bottom) quarks has been discovered. Here the experimental evidence for these states is reviewed and some general comparisons of their measured properties with standard quark model expectations and predictions of various models for nonstandard hadrons are made. The conclusion is that the spectroscopy of all but the simplest hadrons is not yet understood.

682 citations

Book ChapterDOI
01 Mar 2015
TL;DR: In this article, the authors assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way", and they are tempted to look for some fundamental explanation of the situation.
Abstract: If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way", we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone. Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the F-spin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

361 citations

Journal ArticleDOI
TL;DR: In this paper, the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years were reviewed extensively in [Phys. Rept. 639 (2016) 1-121].
Abstract: The past seventeen years have witnessed tremendous progress on the experimental and theoretical explorations of the multiquark states. The hidden-charm and hidden-bottom multiquark systems were reviewed extensively in [Phys. Rept. 639 (2016) 1-121]. In this article, we shall update the experimental and theoretical efforts on the hidden heavy flavor multiquark systems in the past three years. Especially the LHCb collaboration not only confirmed the existence of the hidden-charm pentaquarks but also provided strong evidence of the molecular picture. Besides the well-known $XYZ$ and $P_c$ states, we shall discuss more interesting tetraquark and pentaquark systems either with one, two, three or even four heavy quarks. Some very intriguing states include the fully heavy exotic tetraquark states $QQ\bar Q\bar Q$ and doubly heavy tetraquark states $QQ\bar q \bar q$, where $Q$ is a heavy quark. The $QQ\bar Q\bar Q$ states may be produced at LHC while the $QQ\bar q \bar q$ system may be searched for at BelleII and LHCb. Moreover, we shall pay special attention to various theoretical schemes. We shall emphasize the model-independent predictions of various models which are truly/closely related to Quantum Chromodynamics (QCD). There have also accumulated many lattice QCD simulations through multiple channel scattering on the lattice in recent years, which provide deep insights into the underlying structure/dynamics of the $XYZ$ states. In terms of the recent $P_c$ states, the lattice simulations of the charmed baryon and anti-charmed meson scattering are badly needed. We shall also discuss some important states which may be searched for at BESIII, BelleII and LHCb in the coming years.

339 citations

Journal ArticleDOI
TL;DR: A review of the progress in the field of exotic $XYZ$ hadrons can be found in this article, with a summary on future prospects and challenges, as well as a survey of the current state-of-the-art.
Abstract: The quark model was formulated in 1964 to classify mesons as bound states made of a quark-antiquark pair, and baryons as bound states made of three quarks. For a long time all known mesons and baryons could be classified within this scheme. Quantum Chromodynamics (QCD), however, in principle also allows the existence of more complex structures, generically called exotic hadrons or simply exotics. These include four-quark hadrons (tetraquarks and hadronic molecules), five-quark hadrons (pentaquarks) and states with active gluonic degrees of freedom (hybrids), and even states of pure glue (glueballs). Exotic hadrons have been systematically searched for in numerous experiments for many years. Remarkably, in the past fifteen years, many new hadrons that do not exhibit the expected properties of ordinary (not exotic) hadrons have been discovered in the quarkonium spectrum. These hadrons are collectively known as $XYZ$ states. Some of them, like the charged states, are undoubtedly exotic. Parallel to the experimental progress, the last decades have also witnessed an enormous theoretical effort to reach a theoretical understanding of the $XYZ$ states. Theoretical approaches include not only phenomenological extensions of the quark model to exotics, but also modern non-relativistic effective field theories and lattice QCD calculations. The present work aims at reviewing the rapid progress in the field of exotic $XYZ$ hadrons over the past few years both in experiments and theory. It concludes with a summary on future prospects and challenges.

298 citations


Cites background from "Hadronic molecules"

  • ...It should be stressed, however, that in many cases the inverse of the average velocity (see above) is a good approximation to the triangle diagram [524]....

    [...]

Posted Content
TL;DR: The LHCb Upgrade II was proposed in this paper to exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHC b spectrometer.
Abstract: The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to $ 2 \times 10^{34} \rm cm^{-2}s^{-1}$, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. $CP$-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe $b\to s \ell^+\ell^-$ and $b\to d \ell^+\ell^-$ transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of $B(B^0\to\mu^+\mu^-)/B(B_s^0\to \mu^+\mu^-)$. Probing charm $CP$ violation at the $10^{-5}$ level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier.

279 citations


Cites background from "Hadronic molecules"

  • ...Many states appear near the meson-antimeson (also meson-baryon) thresholds giving raise to molecular interpretations [461–463], or models involving hadron rescattering (cusps or triangle singularities) [464,465]....

    [...]

References
More filters
Journal ArticleDOI
Keith A. Olive1, Kaustubh Agashe2, Claude Amsler3, Mario Antonelli  +222 moreInstitutions (107)
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

7,337 citations

Journal ArticleDOI
TL;DR: PYTHIA 8 represents a complete rewrite in C++, and does not yet in every respect replace the old code, but does contain some new physics aspects that should make it an attractive option especially for LHC physics studies.

5,325 citations

Journal ArticleDOI
TL;DR: In this article, the authors assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way", and they are tempted to look for some fundamental explanation of the situation.

2,244 citations

Journal ArticleDOI
TL;DR: The three quark system is studied in a relativized version of the quark potential model with chromodynamics and the spectrum of baryons is described with parameters consistent with those of an analogous study of meson spectroscopy.
Abstract: We have studied the three quark system in a relativized version of the quark potential model with chromodynamics. With parameters consistent with those of an analogous study of meson spectroscopy we obtain a successful description of the spectrum of baryons. The model naturally explains the apparent absence of spin‐orbit interactions in baryons.

2,203 citations