scispace - formally typeset
Search or ask a question

Handbook of Biological Physics

About: The article was published on 1996-01-01 and is currently open access. It has received 1088 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the behavior of excitable systems driven by Gaussian white noise is reviewed, focusing mainly on those general properties of such systems that are due to noise, and present several applications of their findings in biophysics and lasers.

1,373 citations

Journal ArticleDOI
Leon Glass1
08 Mar 2001-Nature
TL;DR: Molecular and physical techniques combined with physiological and medical studies are addressing questions concerning the dynamics of physiological rhythms and are transforming the understanding of the rhythms of life.
Abstract: Complex bodily rhythms are ubiquitous in living organisms. These rhythms arise from stochastic, nonlinear biological mechanisms interacting with a fluctuating environment. Disease often leads to alterations from normal to pathological rhythm. Fundamental questions concerning the dynamics of these rhythmic processes abound. For example, what is the origin of physiological rhythms? How do the rhythms interact with each other and the external environment? Can we decode the fluctuations in physiological rhythms to better diagnose human disease? And can we develop better methods to control pathological rhythms? Mathematical and physical techniques combined with physiological and medical studies are addressing these questions and are transforming our understanding of the rhythms of life.

1,204 citations

Journal ArticleDOI
TL;DR: This critical review will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications, and in particular explore the interplay between bulk and interface phenomena.
Abstract: Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest for scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at nanometer scales. Why is the nanometer scale specific? What fluid properties are probed at nanometric scales? In other words, why does ‘nanofluidics’ deserve its own brand name? In this critical review, we will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occurring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed (156 references).

1,111 citations

Journal ArticleDOI
TL;DR: The focus of this review is upon the mathematical techniques that give the time distribution of output spikes, namely stochastic differential equations and the Fokker–Planck equation.
Abstract: The integrate-and-fire neuron model is one of the most widely used models for analyzing the behavior of neural systems. It describes the membrane potential of a neuron in terms of the synaptic inputs and the injected current that it receives. An action potential (spike) is generated when the membrane potential reaches a threshold, but the actual changes associated with the membrane voltage and conductances driving the action potential do not form part of the model. The synaptic inputs to the neuron are considered to be stochastic and are described as a temporally homogeneous Poisson process. Methods and results for both current synapses and conductance synapses are examined in the diffusion approximation, where the individual contributions to the postsynaptic potential are small. The focus of this review is upon the mathematical techniques that give the time distribution of output spikes, namely stochastic differential equations and the Fokker–Planck equation. The integrate-and-fire neuron model has become established as a canonical model for the description of spiking neurons because it is capable of being analyzed mathematically while at the same time being sufficiently complex to capture many of the essential features of neural processing. A number of variations of the model are discussed, together with the relationship with the Hodgkin–Huxley neuron model and the comparison with electrophysiological data. A brief overview is given of two issues in neural information processing that the integrate-and-fire neuron model has contributed to – the irregular nature of spiking in cortical neurons and neural gain modulation.

1,050 citations

Journal ArticleDOI
01 Feb 2007-Brain
TL;DR: A critically discuss the literature on seizure prediction and address some of the problems and pitfalls involved in the designing and testing of seizure-prediction algorithms, and point towards possible future developments and propose methodological guidelines for future studies on seizure predictions.
Abstract: The sudden and apparently unpredictable nature of seizures is one of the most disabling aspects of the disease epilepsy. A method capable of predicting the occurrence of seizures from the electroencephalogram (EEG) of epilepsy patients would open new therapeutic possibilities. Since the 1970s investigations on the predictability of seizures have advanced from preliminary descriptions of seizure precursors to controlled studies applying prediction algorithms to continuous multi-day EEG recordings. While most of the studies published in the 1990s and around the turn of the millennium yielded rather promising results, more recent evaluations could not reproduce these optimistic findings, thus raising a debate about the validity and reliability of previous investigations. In this review, we will critically discuss the literature on seizure prediction and address some of the problems and pitfalls involved in the designing and testing of seizure-prediction algorithms. We will give an account of the current state of this research field, point towards possible future developments and propose methodological guidelines for future studies on seizure prediction.

1,018 citations