scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Handbook of Sensory Physiology

01 Feb 1975-British Journal of Ophthalmology (BMJ Publishing Group Ltd.)-Vol. 59, Iss: 2, pp 111-112
About: This article is published in British Journal of Ophthalmology.The article was published on 1975-02-01 and is currently open access. It has received 7158 citations till now. The article focuses on the topics: Sensory Physiology.
Citations
More filters
Journal ArticleDOI
TL;DR: Only a machine could think, and only very special kinds of machines, namely brains and machines with internal causal powers equivalent to those of brains, and no program by itself is sufficient for thinking.
Abstract: This article can be viewed as an attempt to explore the consequences of two propositions. (1) Intentionality in human beings (and animals) is a product of causal features of the brain. I assume this is an empirical fact about the actual causal relations between mental processes and brains. It says simply that certain brain processes are sufficient for intentionality. (2) Instantiating a computer program is never by itself a sufficient condition of intentionality. The main argument of this paper is directed at establishing this claim. The form of the argument is to show how a human agent could instantiate the program and still not have the relevant intentionality. These two propositions have the following consequences: (3) The explanation of how the brain produces intentionality cannot be that it does it by instantiating a computer program. This is a strict logical consequence of 1 and 2. (4) Any mechanism capable of producing intentionality must have causal powers equal to those of the brain. This is meant to be a trivial consequence of 1. (5) Any attempt literally to create intentionality artificially (strong AI) could not succeed just by designing programs but would have to duplicate the causal powers of the human brain. This follows from 2 and 4.“Could a machine think?” On the argument advanced here only a machine could think, and only very special kinds of machines, namely brains and machines with internal causal powers equivalent to those of brains. And that is why strong AI has little to tell us about thinking, since it is not about machines but about programs, and no program by itself is sufficient for thinking.

4,111 citations

Book
01 Jan 1980
TL;DR: In this article, the main argument of this paper is directed at establishing this claim and the form of the argument is to show how a human agent could instantiate the program and still not have the relevant intentionality.
Abstract: This article can be viewed as an attempt to explore the consequences of two propositions. (1) Intentionality in human beings (and animals) is a product of causal features of the brain I assume this is an empirical fact about the actual causal relations between mental processes and brains It says simply that certain brain processes are sufficient for intentionality. (2) Instantiating a computer program is never by itself a sufficient condition of intentionality The main argument of this paper is directed at establishing this claim The form of the argument is to show how a human agent could instantiate the program and still not have the relevant intentionality. These two propositions have the following consequences (3) The explanation of how the brain produces intentionality cannot be that it does it by instantiating a computer program. This is a strict logical consequence of 1 and 2. (4) Any mechanism capable of producing intentionality must have causal powers equal to those of the brain. This is meant to be a trivial consequence of 1. (5) Any attempt literally to create intentionality artificially (strong AI) could not succeed just by designing programs but would have to duplicate the causal powers of the human brain. This follows from 2 and 4. "Could a machine think?" On the argument advanced here only a machine could think, and only very special kinds of machines, namely brains and machines with internal causal powers equivalent to those of brains And that is why strong AI has little to tell us about thinking, since it is not about machines but about programs, and no program by itself is sufficient for thinking.

4,040 citations

Journal ArticleDOI
TL;DR: In this article, the first stage consists of linear filters that are oriented in space-time and tuned in spatial frequency, and the outputs of quadrature pairs of such filters are squared and summed to give a measure of motion energy.
Abstract: A motion sequence may be represented as a single pattern in x–y–t space; a velocity of motion corresponds to a three-dimensional orientation in this space. Motion sinformation can be extracted by a system that responds to the oriented spatiotemporal energy. We discuss a class of models for human motion mechanisms in which the first stage consists of linear filters that are oriented in space-time and tuned in spatial frequency. The outputs of quadrature pairs of such filters are squared and summed to give a measure of motion energy. These responses are then fed into an opponent stage. Energy models can be built from elements that are consistent with known physiology and psychophysics, and they permit a qualitative understanding of a variety of motion phenomena.

3,504 citations

Journal ArticleDOI
TL;DR: Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it.
Abstract: Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for “central” fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal cha...

3,200 citations

Journal ArticleDOI
TL;DR: A motor theory of speech perception, initially proposed to account for results of early experiments with synthetic speech, is now extensively revised to accommodate recent findings, and to relate the assumptions of the theory to those that might be made about other perceptual modes.

2,523 citations