scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Hazardous waste generation and management in China: A review

Huabo Duan1, Qifei Huang, Qi Wang, Bingyan Zhou, Jinhui Li1 
30 Oct 2008-Journal of Hazardous Materials (Elsevier)-Vol. 158, Iss: 2, pp 221-227
TL;DR: The generation of discarded household hazardous waste (HHW) is another important source of hazardous waste and has come into being a huge challenge faced to Chinese environmental management.
Abstract: Associated with the rapid economic growth and tremendous industrial prosperity, continues to be the accelerated increase of hazardous waste generation in China. The reported generation of industrial hazardous waste (IHW) was 11.62 million tons in 2005, which accounted for 1.1% of industrial solid waste (ISW) volume. An average of 43.4% of IHW was recycled, 33.0% was stored, 23.0% was securely disposed, and 0.6% was discharged without pollution controlling. By the end of 2004, there were 177 formal treatment and disposal centers for IHW management. The reported quantity of IHW disposed in these centers was only 416,000 tons, 65% of which was landfilled, 35% was incinerated. The quantity of waste alkali and acid ranked the first among IHW categories, which accounted for 30.9%. And 39.0% of IHW was generated from the raw chemical materials and chemical products industry sectors. South west China had the maximum generation of IHW, accounted for 40.0%. In addition, it was extrapolated that 740,000 tons of medical wastes were generated per year, of which only 10% was soundly managed. The generation of discarded household hazardous waste (HHW) is another important source of hazardous waste. A great proportion of HHW was managed as municipal solid waste (MSW). Hazardous waste pollution controlling has come into being a huge challenge faced to Chinese environmental management.
Citations
More filters
Journal ArticleDOI
TL;DR: The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed.
Abstract: It is important to understand the status and extent of soil contamination with trace elements to make sustainable management strategies for agricultural soils. The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed. The results showed that atmospheric deposition was responsible for 43-85% of the total As, Cr, Hg, Ni and Pb inputs, while livestock manures accounted for approximately 55%, 69% and 51% of the total Cd, Cu and Zn inputs, respectively. Among the elements concerned, Cd was a top priority in agricultural soils in China, with an average input rate of 0.004 mg/kg/yr in the plough layer (0-20 cm). Due to the spatial and temporal heterogeneity of the sources, the inventory as well as the environmental risks of trace elements in soils varies on a regional scale. For example, sewage sludge and fertilizers (mainly organic and phosphate-based inorganic fertilizers) can also be the predominant sources of trace elements where these materials were excessively applied. This work provides baseline information to develop policies to control and reduce toxic element inputs to and accumulation in agricultural soils.

558 citations


Cites background from "Hazardous waste generation and mana..."

  • ...There are some wastes, such as the wastes from paper mill, food industries and some municipal solid wastes (about 4%), used partially as organic fertilizers after composting (Duan et al., 2008), which had been included in fertilizers....

    [...]

  • ...However, the industrial wastes are prohibited for land application, and the municipal solid wastes are also mainly treated as landfill or incineration due to their potential hazards from pathogens and toxic pollutants (Wei et al., 2000; SEPAC, 2006a,b; Duan et al., 2008)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors discuss the available literature on end-of-life lithium-ion batteries from a waste management standpoint and present potential solutions to help mitigate their hazardous properties.
Abstract: This review paper discusses the available literature on end-of-life lithium-ion batteries (LIBs) from a waste management standpoint. The amount of LIBs entering the waste stream has increased in recent years because of their growing prevalence in electronic devices and vehicles. The electric vehicle (EV) industry, in particular, is expected to create a high demand for LIBs and this paper has identified them as a major contributor to the LIB waste stream in the near future. Waste LIBs exhibit many hazardous characteristics, such as the ability to spontaneously ignite and/or release hazardous chemicals under landfill conditions. The authors review the current findings with regards to their hazardous properties and present potential solutions to help mitigate these problems. One major solution is to manage LIBs as a hazardous or universal waste, which would entail special regulations for this waste stream. While lead-acid and nickel-cadmium batteries are often regulated as a hazardous or universal waste, most countries, such as the U.S., currently manage LIBs as a general solid waste. However, it may be plausible to consider these types of batteries as a hazardous or universal waste because they have frequently exceeded federal and state regulatory thresholds for certain metals, such as lead. This paper also identifies recycling as another major solution for end-of-life LIB management. Based on life cycle impact assessment studies, recycling certain types of LIBs results in a lower resource depletion potential and less air emissions than a cradle-to-grave management scenario.

310 citations

Journal ArticleDOI
Yan Xu1, Jinhui Li1, Quanyin Tan1, Anesia Lauren Peters1, Congren Yang1 
TL;DR: The status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article and can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers.
Abstract: With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility.

293 citations


Cites background from "Hazardous waste generation and mana..."

  • ...In recent years, with the country’s rapid economic growth, environmental conditions have been deteriorating (Duan et al., 2008, 2011)....

    [...]

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a three-pronged approach: new regulation or policy is quite a necessity to deal with the challenges unique to spent LiBs recycling; collection systems for CE and EV batteries can be substantially established based upon past experience of general e-waste management and extended producer responsibility, respectively; more emphasis needs to be placed on new technology for spent LiB recycling, to tackle the large quantities of stored LiBs.
Abstract: Consumer electronics (CE) and electric vehicles (EVs) associated with renewable and sustainable energy have been rapidly changing human lifestyles and transportation habits since 1990s. These active innovations have resulted in a large amount of spent lithium-ion batteries (LiBs) in China. At least two problems are declining the sustainability of production and final disposal of LiBs: one is potential environmental and health risk, and the other is that more and more valuable resources are being stored in spent LiBs without appropriate recycling. We found that a lack of effective regulation, collection systems and recycling technologies are major barriers and challenges to solve the problems. And in order to develop a comprehensive management scheme for this waste stream in China, we proposed a three-pronged approach: (1) new regulation or policy is quite a necessity to deal with the challenges unique to spent LiBs recycling; (2) collection systems for CE and EV batteries can be substantially established based upon past experience of general e-waste management and extended producer responsibility, respectively; and (3) more emphasis needs to be placed on new technology for spent LiBs recycling, to tackle the large quantities of stored spent LiBs.

240 citations

Journal ArticleDOI
TL;DR: This work shows that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores, and indicates a trend and potential if applied across a broader range of e-Waste sources and metals extracted.
Abstract: Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they p...

236 citations

References
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.
Abstract: Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge.

463 citations

Journal ArticleDOI
TL;DR: Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.
Abstract: Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day(-1)) and the other by estimating the number of waste bags produced each day (650 kg day(-1)). Furthermore, measurements of the EC(50) parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.

214 citations

Journal ArticleDOI
TL;DR: The personnel working under the occupier were trained to take adequate precautionary measures in handling these bio-hazardous waste materials and the process of segregation, collection, transport, storage and final disposal of infectious waste was done in compliance with the Standard Procedures.
Abstract: The objectives of this study were: (i) to assess the waste handling and treatment system of hospital bio-medical solid waste and its mandatory compliance with Regulatory Notifications for Bio-medical Waste (Management and Handling) Rules, 1998, under the Environment (Protection Act 1986), Ministry of Environment and Forestry, Govt. of India, at the chosen KLE Society's J. N. Hospital and Medical Research Center, Belgaum, India and (ii) to quantitatively estimate the amount of non-infectious and infectious waste generated in different wards/sections. During the study, it was observed that: (i) the personnel working under the occupier (who has control over the institution to take all steps to ensure biomedical waste is handled without any adverse effects to human health and the environment) were trained to take adequate precautionary measures in handling these bio-hazardous waste materials, (ii) the process of segregation, collection, transport, storage and final disposal of infectious waste was done in compliance with the Standard Procedures, (iii) the final disposal was by incineration in accordance to EPA Rules 1998, (iv) the non-infectious waste was collected separately in different containers and treated as general waste, and (v) on an average about 520 kg of non-infectious and 101 kg of infectious waste is generated per day (about 2.31 kg per day per bed, gross weight comprising both infectious and non-infectious waste). This hospital also extends its facility to the neighboring clinics and hospitals by treating their produced waste for incineration.

196 citations


"Hazardous waste generation and mana..." refers background in this paper

  • ...Medical wastes were those wastes from health-care-related acilities such as hospitals: waste of animals intentionally xposed to pathogens; bulk human blood and blood products; athological waste; microbiological waste; medical sharps [7,8]....

    [...]

Journal ArticleDOI
TL;DR: In developing countries, public health attention is focused on urgent health problems such as infectious diseases, malnutrition, and infant mortality, so developing countries are especially in need of low-cost technologies for managing hazardous wastes.
Abstract: In developing countries, public health attention is focused on urgent health problems such as infectious diseases, malnutrition, and infant mortality. As a country develops and gains economic resources, more attention is directed to health concerns related to hazardous chemical wastes. Even if a country has little industry of its own that generates hazardous wastes, the importation of hazardous wastes for recycling or disposal can present health hazards. It is difficult to compare the quantities of hazardous wastes produced in different countries because of differences in how hazardous wastes are defined. In most countries, landfilling is the most common means of hazardous waste disposal, although substantial quantities of hazardous wastes are incinerated in some countries. Hazardous wastes that escape into the environment most often impact the public through air and water contamination. An effective strategy for managing hazardous wastes should encourage waste minimization, recycling, and reuse over disposal. Developing countries are especially in need of low-cost technologies for managing hazardous wastes.

69 citations

Journal ArticleDOI
TL;DR: The composition of the solid waste stream in both regions suggested the influence of another set of variables such as local climate, migration patterns and marketing coverage, in order to establish the effect of low quantities of HHW upon the environment and public health.
Abstract: Household hazardous waste (HHW) generation in two Mexican regions was examined, a northern region (bordering with the USA) and a central region. The aim of this work was to determine the dynamics of solid waste generation and to be able to compare the results of both regions, regarding consumption patterns and solid waste generation rates. In the northern region, household solid waste was analysed quantitatively. In order to perform this analysis, the population was categorized into three socioeconomic strata (lower, middle, upper). Waste characterization revealed the presence of products that give origin to household hazardous waste. In the northern region (Mexicali city), household hazardous waste comprised 3.7% of municipal solid waste, the largest categories in this fraction were home care products (29.2%), cleaning products (19.5%) and batteries and electronic equipment (15.7%). In the central region, HHW comprised 1.03% of municipal solid waste; the main categories in this fraction were represented by cleaning products (39%), self care products (27.3%), and insecticides (14.4%). In Mexicali, the socioeconomic study demonstrated that the production of HHW is independent of the income level. Furthermore, the composition of the solid waste stream in both regions suggested the influence of another set of variables such as local climate, migration patterns and marketing coverage. Further research is needed in order to establish the effect of low quantities of HHW upon the environment and public health.

57 citations