scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Health behavior change following chronic illness in middle and later life

TL;DR: Results provide important new information on health behavior changes among those with chronic disease and suggest that intensive efforts are required to help initiate and maintain lifestyle improvements among this population.
Abstract: Objectives Understanding lifestyle improvements among individuals with chronic illness is vital for targeting interventions that can increase longevity and improve quality of life. Methods Data from the U.S. Health and Retirement Study were used to examine changes in smoking, alcohol use, and exercise 2-14 years after a diagnosis of heart disease, diabetes, cancer, stroke, or lung disease. Results Patterns of behavior change following diagnosis indicated that the vast majority of individuals diagnosed with a new chronic condition did not adopt healthier behaviors. Smoking cessation among those with heart disease was the largest observed change, but only 40% of smokers quit. There were no significant increases in exercise for any health condition. Changes in alcohol consumption were small, with significant declines in excessive drinking and increases in abstention for a few health conditions. Over the long term, individuals who made changes appeared to maintain those changes. Latent growth curve analyses up to 14 years after diagnosis showed no average long-term improvement in health behaviors. Discussion Results provide important new information on health behavior changes among those with chronic disease and suggest that intensive efforts are required to help initiate and maintain lifestyle improvements among this population.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Chronic disease diagnosis may be an important teachable moment for health behavior change, but the behavior changing effect may be smaller for those with a history of major depression especially when it comes to smoking.

8 citations

Journal ArticleDOI
TL;DR: Investigation of whether depression and duration of inpatient hospital care impact smoking outcomes among stroke survivors found that for survivors who experienced longer inpatient care there was a weaker association between depression and cigarette consumption.
Abstract: Persistent smoking following stroke is associated with poor outcomes including development of secondary stroke and increased mortality risk. This study uses longitudinal data from the U.S. Health and Retirement Study (1992–2008) to investigate whether depression and duration of inpatient hospital care impact smoking outcomes among stroke survivors (N = 745). Longer duration of care was associated with lower likelihood of persistent smoking. Depression was associated with greater cigarette consumption. Interaction effects were also significant, indicating that for survivors who experienced longer inpatient care there was a weaker association between depression and cigarette consumption. Implications for practice and research are discussed.

8 citations


Cites background from "Health behavior change following ch..."

  • ...…recognized that complete abstinence from cigarette smoking is valuable for mitigating the consequences of stroke, preventing future adverse health events, and achieving good overall health, a large percentage of stroke survivors continue to smoke following diagnosis (Newsom et al., 2011; 2012)....

    [...]

  • ...However, it is estimated that over three-quarters of individuals who smoke prior to stroke continue to smoke up to 2 years after stroke with little improvement in smoking habits in subsequent years (Newsom et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: A cancer diagnosis may be a “teachable moment” in which strategies to promote smoking cessation for individuals diagnosed with smoking-related and non-smoking-related cancers should be investigated.
Abstract: Cigarette smoking among cancer survivors increases the risk of recurrence and secondary cancers. We sought to investigate smoking cessation following diagnosis of cancer compared to those not diagnosed with cancer. We also investigated cessation following diagnosis of a smoking-related and non-smoking-related cancer separately. We conducted a matched cohort study within the Health Professionals Follow-Up Study (HPFS). We identified 566 men diagnosed with cancer who were current cigarette smokers at the time of diagnosis between 1986 and 2010 (exposed). Men diagnosed with cancer were age-matched 1:4 to men without a diagnosis of cancer who were also current cigarette smokers (unexposed). Multivariable conditional logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (CI) to evaluate the association between a cancer diagnosis and smoking cessation within 2 and 4 years post diagnosis adjusted for potential confounders, overall and for smoking-related and non-smoking-related cancers. Of the men with cancer, 38% quit within 2 years and 42% within 4 years of diagnosis. Men diagnosed with cancer were more likely to quit smoking within 2 (OR = 2.5, 95% CI: 2.0–3.0) and 4 years (OR = 1.6, 95% CI: 1.3–2.0) post diagnosis, compared to matched men without cancer. The association was similar for smoking-related (OR = 3.4, 95%: 1.6–7.2) and non-smoking-related cancers (OR = 3.8, 95%: 2.8–5.2). Men diagnosed with cancer were more likely to quit smoking compared to men not diagnosed with cancer. A cancer diagnosis may be a “teachable moment” in which strategies to promote smoking cessation for individuals diagnosed with smoking-related and non-smoking-related cancers should be investigated. There is a continued need for the widespread implementation of cessation interventions for cancer survivors.

8 citations

DOI
01 Jan 2019
TL;DR: The role of physicians has become limited to controlling and palliating symptoms, and the increasing population of patients with long-term conditions are associated with high levels of morbidity, healthcare costs and GP workloads.
Abstract: Pharmacy practice has changed substantially in recent years. The professionals have the opportunity to contribute directly to patient care in order to reduce morbimortality related to medication use, promoting health and preventing diseases. Healthcare organizations worldwide are under substantial pressure from increasing patient demand. Unfortunately, a cure is not always possible particularly in this era of chronic diseases, and the role of physicians has become limited to controlling and palliating symptoms. The increasing population of patients with long-term conditions are associated with high levels of morbidity, healthcare costs and GP workloads. Clinical pharmacy took over an aspect of medical care that had been partially abandoned by physicians. Overburdened by patient loads and the explosion of new drugs, physicians turned to pharmacists more and more for drug information, especially within institutional settings. Once relegated to counting and pouring, pharmacists headed institutional reviews of drug utilization and served as consultants to all types of health-care facilities. In addition, when clinical pharmacists are active members of the care team, they enhance efficiency by: Providing critical input on medication use and dosing. Working with patients to solve problems with their medications and improve adherence.

8 citations

Journal ArticleDOI
TL;DR: Leisure time physical activity may be considered as an efficient and inexpensive non-pharmacological tool for DM treatment and healthcare professionals should educate and promote PA since primary-care diagnosis in addition to prevent disease-related complications.

8 citations

References
More filters
Book
01 Jan 1987
TL;DR: This work states that maximum Likelihood for General Patterns of Missing Data: Introduction and Theory with Ignorable Nonresponse and large-Sample Inference Based on Maximum Likelihood Estimates is likely to be high.
Abstract: Preface.PART I: OVERVIEW AND BASIC APPROACHES.Introduction.Missing Data in Experiments.Complete-Case and Available-Case Analysis, Including Weighting Methods.Single Imputation Methods.Estimation of Imputation Uncertainty.PART II: LIKELIHOOD-BASED APPROACHES TO THE ANALYSIS OF MISSING DATA.Theory of Inference Based on the Likelihood Function.Methods Based on Factoring the Likelihood, Ignoring the Missing-Data Mechanism.Maximum Likelihood for General Patterns of Missing Data: Introduction and Theory with Ignorable Nonresponse.Large-Sample Inference Based on Maximum Likelihood Estimates.Bayes and Multiple Imputation.PART III: LIKELIHOOD-BASED APPROACHES TO THE ANALYSIS OF MISSING DATA: APPLICATIONS TO SOME COMMON MODELS.Multivariate Normal Examples, Ignoring the Missing-Data Mechanism.Models for Robust Estimation.Models for Partially Classified Contingency Tables, Ignoring the Missing-Data Mechanism.Mixed Normal and Nonnormal Data with Missing Values, Ignoring the Missing-Data Mechanism.Nonignorable Missing-Data Models.References.Author Index.Subject Index.

18,201 citations

BookDOI
26 Aug 2002

6,148 citations


"Health behavior change following ch..." refers methods in this paper

  • ...—Latent growth curve models using all available data assume that the data are at least missing at random (Little & Rubin, 2002), and the pattern of missing data from this study may not meet this criterion (i.e., nonignorable missingness)....

    [...]

Book
27 Jul 2009
TL;DR: The reasoned action approach as mentioned in this paper is an integrative framework for the prediction and change of human social behavior, and it provides methodological and conceptual tools for predicting and explaining social behavior and for designing behavior change interventions.
Abstract: This book describes the reasoned action approach, an integrative framework for the prediction and change of human social behavior. It provides an up-to-date review of relevant research, discusses critical issues related to the reasoned action framework, and provides methodological and conceptual tools for the prediction and explanation of social behavior and for designing behavior change interventions.

5,005 citations


"Health behavior change following ch..." refers background in this paper

  • ...Subjective norms in favor of changing behavior (Ajzen & Albarracín, 2007) are likely to be salient when a chronic illness has been diagnosed and also should lead to healthier behavior....

    [...]

MonographDOI
TL;DR: In this article, the authors present a generalized linear model for categorical data, which is based on the Logit model, and use it to fit Logistic Regression models.
Abstract: Preface. 1. Introduction: Distributions and Inference for Categorical Data. 1.1 Categorical Response Data. 1.2 Distributions for Categorical Data. 1.3 Statistical Inference for Categorical Data. 1.4 Statistical Inference for Binomial Parameters. 1.5 Statistical Inference for Multinomial Parameters. Notes. Problems. 2. Describing Contingency Tables. 2.1 Probability Structure for Contingency Tables. 2.2 Comparing Two Proportions. 2.3 Partial Association in Stratified 2 x 2 Tables. 2.4 Extensions for I x J Tables. Notes. Problems. 3. Inference for Contingency Tables. 3.1 Confidence Intervals for Association Parameters. 3.2 Testing Independence in Two Way Contingency Tables. 3.3 Following Up Chi Squared Tests. 3.4 Two Way Tables with Ordered Classifications. 3.5 Small Sample Tests of Independence. 3.6 Small Sample Confidence Intervals for 2 x 2 Tables . 3.7 Extensions for Multiway Tables and Nontabulated Responses. Notes. Problems. 4. Introduction to Generalized Linear Models. 4.1 Generalized Linear Model. 4.2 Generalized Linear Models for Binary Data. 4.3 Generalized Linear Models for Counts. 4.4 Moments and Likelihood for Generalized Linear Models . 4.5 Inference for Generalized Linear Models. 4.6 Fitting Generalized Linear Models. 4.7 Quasi likelihood and Generalized Linear Models . 4.8 Generalized Additive Models . Notes. Problems. 5. Logistic Regression. 5.1 Interpreting Parameters in Logistic Regression. 5.2 Inference for Logistic Regression. 5.3 Logit Models with Categorical Predictors. 5.4 Multiple Logistic Regression. 5.5 Fitting Logistic Regression Models. Notes. Problems. 6. Building and Applying Logistic Regression Models. 6.1 Strategies in Model Selection. 6.2 Logistic Regression Diagnostics. 6.3 Inference About Conditional Associations in 2 x 2 x K Tables. 6.4 Using Models to Improve Inferential Power. 6.5 Sample Size and Power Considerations . 6.6 Probit and Complementary Log Log Models . 6.7 Conditional Logistic Regression and Exact Distributions . Notes. Problems. 7. Logit Models for Multinomial Responses. 7.1 Nominal Responses: Baseline Category Logit Models. 7.2 Ordinal Responses: Cumulative Logit Models. 7.3 Ordinal Responses: Cumulative Link Models. 7.4 Alternative Models for Ordinal Responses . 7.5 Testing Conditional Independence in I x J x K Tables . 7.6 Discrete Choice Multinomial Logit Models . Notes. Problems. 8. Loglinear Models for Contingency Tables. 8.1 Loglinear Models for Two Way Tables. 8.2 Loglinear Models for Independence and Interaction in Three Way Tables. 8.3 Inference for Loglinear Models. 8.4 Loglinear Models for Higher Dimensions. 8.5 The Loglinear Logit Model Connection. 8.6 Loglinear Model Fitting: Likelihood Equations and Asymptotic Distributions . 8.7 Loglinear Model Fitting: Iterative Methods and their Application . Notes. Problems. 9. Building and Extending Loglinear/Logit Models. 9.1 Association Graphs and Collapsibility. 9.2 Model Selection and Comparison. 9.3 Diagnostics for Checking Models. 9.4 Modeling Ordinal Associations. 9.5 Association Models . 9.6 Association Models, Correlation Models, and Correspondence Analysis . 9.7 Poisson Regression for Rates. 9.8 Empty Cells and Sparseness in Modeling Contingency Tables. Notes. Problems. 10. Models for Matched Pairs. 10.1 Comparing Dependent Proportions. 10.2 Conditional Logistic Regression for Binary Matched Pairs. 10.3 Marginal Models for Square Contingency Tables. 10.4 Symmetry, Quasi symmetry, and Quasiindependence. 10.5 Measuring Agreement Between Observers. 10.6 Bradley Terry Model for Paired Preferences. 10.7 Marginal Models and Quasi symmetry Models for Matched Sets . Notes. Problems. 11. Analyzing Repeated Categorical Response Data. 11.1 Comparing Marginal Distributions: Multiple Responses. 11.2 Marginal Modeling: Maximum Likelihood Approach. 11.3 Marginal Modeling: Generalized Estimating Equations Approach. 11.4 Quasi likelihood and Its GEE Multivariate Extension: Details . 11.5 Markov Chains: Transitional Modeling. Notes. Problems. 12. Random Effects: Generalized Linear Mixed Models for Categorical Responses. 12.1 Random Effects Modeling of Clustered Categorical Data. 12.2 Binary Responses: Logistic Normal Model. 12.3 Examples of Random Effects Models for Binary Data. 12.4 Random Effects Models for Multinomial Data. 12.5 Multivariate Random Effects Models for Binary Data. 12.6 GLMM Fitting, Inference, and Prediction. Notes. Problems. 13. Other Mixture Models for Categorical Data . 13.1 Latent Class Models. 13.2 Nonparametric Random Effects Models. 13.3 Beta Binomial Models. 13.4 Negative Binomial Regression. 13.5 Poisson Regression with Random Effects. Notes. Problems. 14. Asymptotic Theory for Parametric Models. 14.1 Delta Method. 14.2 Asymptotic Distributions of Estimators of Model Parameters and Cell Probabilities. 14.3 Asymptotic Distributions of Residuals and Goodnessof Fit Statistics. 14.4 Asymptotic Distributions for Logit/Loglinear Models. Notes. Problems. 15. Alternative Estimation Theory for Parametric Models. 15.1 Weighted Least Squares for Categorical Data. 15.2 Bayesian Inference for Categorical Data. 15.3 Other Methods of Estimation. Notes. Problems. 16. Historical Tour of Categorical Data Analysis . 16.1 Pearson Yule Association Controversy. 16.2 R. A. Fisher s Contributions. 16.3 Logistic Regression. 16.4 Multiway Contingency Tables and Loglinear Models. 16.5 Recent and Future? Developments. Appendix A. Using Computer Software to Analyze Categorical Data. A.1 Software for Categorical Data Analysis. A.2 Examples of SAS Code by Chapter. Appendix B. Chi Squared Distribution Values. References. Examples Index. Author Index. Subject Index. Sections marked with an asterisk are less important for an overview.

4,650 citations